Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation

Open access

Abstract

Phytoremediation is a plant based environmental cleanup technology to contain (rendering less toxic), sequester and degrade contaminated susbtrates. As can be seen from data metrics, it is gaining cosiderable importance globally. Phytoremediation approach is being applied for cleanup of inorganic (potentially toxic metals), organic (persistent, emergent, poly-acromatic hydrocarbons and crude oil etc.) and co-contaminated (mixture of inorganic and organic) and/or polluted sites globally. Recently new approaches of utilizing abundantly available natural organic amendments have yielded significant results. Ricinus communis L. (Castor bean) is an important multipurpose crop viz., Agricultural, Energy, Environmental and Industrial crop. The current status of knowledge is abundant but scattered which need to be exploited for sustainable development. This review collates and evaluates all the scattered information and provides a critical view on the possible options for exploiting its potential as follows: 1. Origin and distribution, 2. Lead toxicity bioassays, 3. Progress in arbuscular mycorrhizal fungi-assisted phytoremediation, 4. Promising bioenergy crop that can be linked to pytoremediation, 5. A renewable source for many bioproducts with rich chemical diversity, 6. It is a good biomonitor and bioindicator of atmospheric pollution in urban areas, 7. Enhanced chelate aided remediation, 8. Its rhizospheric processes accelerate natural attenuation, 9. It is suitable for remediation of crude oil contaminated soil, 10. It is an ideal candidate for aided phytostabilization, 11. Castor bean is a wizard for phytoremediation and 12. Its use in combined phytoextraction and ecocatalysis. Further, the knowledge gaps and scope for future research on sustainable co-generation of value chain and value addition biobased products for sustainable circular economy and environmental security are described in this paper.

1. Weiss EA. Castor, Sesame, and Safflower, Leonard Hill, London, 1971.

2. Moshkin VA. History and Origin of Castor, pp. 6-10. In: Moshkin VA. (ed) Castor. Oxonian Press Pvt. Ltd., New Delhi, 1986.

3. McKeon TA, Hayes DG, Hildebrand DF, Randall J, Weselake RJ (Eds). Industrial Crops. 2016 - Academic Press. 474 pages.

4. Gupta AK, Sinha S. Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresour. Technol. 2007, 98, 1788-1794.

5. Melo EEC, Costa ETS, Guilherme LRG, Faquin V, Nascimento CWO. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution, J. Hazard. Mater., 2009, 168: 479-483.

6. Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K. Natural organic amendments for improved phytoremediation of polluted Soils: A Review of Recent Progress. Pedosphere, 2016, 26(1), 1-12.

7. Singh AS, Kumari S, Modi AR, Gajera BB, Narayanan S, Kumar N. Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.), Ind. Crops Prod., 2015, 74: 55-62.

8. Cecchi CGS, Zanchi C. Phytoremediation of soil polluted by nickel using agricultural crops, Environ. Manag., 2005, 36: 675-681.

9. Shi G, Cai Q. Cadmium tolerance and accumulation in eight potential energy crops, Biotechnol. Adv. 2009, 27(5): 555-561.

10. Olivares AR, Carrillo-Gonzalez R, Gonzalez-Chavez MDCA, Hernandez, RMS. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production, J. Environ. Manage., 2013, 114: 316-323.

11. de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments, J. Geochem. Explor., 2012, 123: 3-7.

12. Costa ET de S, Guilherme LRG, de Melo EEC, Ribeiro BT, Inacio ESB, Severiano EC, Faquin V, Hale BA. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes, Biol. Trace Elem. Res., 2012, 145: 93-100.

13. Bauddh K, Singh R.P. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis L. and Brassica juncea L. in salinity and drought affected cadmium contaminated soil, Ecotox. Environ. Safe., 2012a, 85: 13-22.

14. Bauddh K, Singh RP. Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis L. and Brassica juncea L. from the contaminated soil. Int. J. Phytoremed., 2012b, 14(8): 772-785.

15. Kumar A and Gottesfeld P. Lead content in household paints in India. Science of The Total Environment, 2008, 407(1): 333-7

16. Zhuang X, Chen J, Shim H, Bai Z. New advances in plant growth promoting rhizobacteria for bioremediation, Environ. Int. 2007, 33: 406-413.

17. de Souza Costa ET, Guilherme LRG, de Melo EEC, Ribeiro BT, dos Santos B, Inacio E, da Costa Severiano E, Faquin V, Hale BA. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes, Biol. Trace Elem. Res., 2012, 145 (1): 93-100.

18. Bosiacki M, Kleiber T, Kaczmarek J. Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates, Arch. Environ. Prot., 2013, 39 (3): 47-59.

19. Yi X, Jiang L, Liu Q, Luo M, Chen Y. Seedling emergence and growth of Ricinus communis L. grown in soil contaminated by lead/zinc tailing, In: Proc. 2014 Ann. Cong. Advanced Eng. Tech., CAET, 2014, pp. 445-452.

20. Arnon DI. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. plant physiology 24: 1-15.

21. Bates, L. S., Waldren, R. P., & Teare, I. D. Rapid determination of free proline for water stress studies. Plant and Soil, 1973, 39, 205-207.

22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. Protein Measurement with the Folin Phenol Reagent J. Biol. Chem. 1951, 193, 265-275.

23. Heath RL, Packer L.. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics 1968,125,189-198.

24. Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals, Biotech. Adv., 2011, 29: 645-653.

25. Leung HM, Yea ZH, Wang MH. Interaction of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils, Environ. Pollut., 2006, 139: 1-8.

26. Bhalerao SA. Arbuscular mycorrhizal fungi: a potential biotechnological tool for phytoremediation of heavy metal contaminated soils, Int. J. Sci. Nat., 2013, 4(1): 1-15.

27. Cabral L, Soares CRFS, Giachini AJ, Siqueira JO. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications, World J. Microbiol. Biotechnol., 2015, 31(11): 1655-1664.

28. Baldwin BS, Cossar RD. Castor yield in response to planting date at four locations in the south-central United States, Ind. Crops Prod., 2009, 29: 443-448.

29. Oliveira LB, Araujo MSM, Rosa LP, Barata M, Rovere ELL. Analysis of the sustainability of using wastes in the Brazilian power industry, Renew. Sustain. Energy Rev., 2008, 12: 883-890.

30. de Abreu CA, Cantoni M., Coscione AR, Paz-Ferreiro J. Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue, Applied Environ. Soil Science, 2012, Article ID 476821, 7 pages http://dx.doi.org/10.1155/2012/476821.

31. Reddy KR, Matcha SK. Quantifying nitrogen effects of castor bean (Ricinus communis L.) development, growth, and photosynthesis, Ind. Crops Prod., 2010, 31: 185-191.

32. Ogunniyi DS. Castor oil: a vital industrial raw material. Bioresour. Techn., 2006, 97: 1086-1091.

33. Scholz V, da Silva JN. Prospects and risks of the use of castor oil as a fuel, Biomass Bioenergy . 2008, 32: 95-100.

34. Gonzalez-Chavez MCA, Olivares AR, Carrillo-Gonzalez R, Leal ER. Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings, Int. J. Environ. Sci. Tech., 2015, 12: 2263-2272.

35. Annapurna D, Rajkumar M, Prasad MNV. Potential of Castor bean (Ricinus communis L.) for phytoremediation of metalliferous waste assisted by plant growth-promoting bacteria: possible cogeneration of economic products. In: Prasad MNV (ed), Bioremediation and Bioeconomy, Amsterdam: Elsevier, 2016, pp. 149-178.

36. Ribeiro, P.R., de Castro, R.D. and Fernandez, L.G.. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Industrial Crops and Products 2016, 91, 358-376.

37. Visser EM, Filho DO, Martins MA, Steward BL. Bioethanol production potential from Brazillian biodiesel co-products, Biomass Bioenergy, 2011, 35: 489-494.

38. Severino LS, Auld DL. A framework for the study of the growth and development of castor plant, Ind. Crops Prod., 2013, 46: 25-38.

39. Marter AD. Castor: Markets, Utilization and Prospect, Tropical Product Institute, G152, 1981, p. 55-78.

40. Wiese EA. Oil seed crops, Trop. Agri. Ser., Longman, 1983, pp. 31-53.

41. Glaser LK, Roetheli JC, Thompson AE, Brigham RD, Carlson KD. Castor and Lesquerella: sources of hydroxyl fatty acids. In: 1992 Year book of Agriculture, USDA Office, Publishing Visual Communication, Washnigton, 1993, pp. 111-117.

42. Dole KK, Keskar VR. Dehydration of castor oil, Curr. Sci., 1950, 19(8): 242-243.

43. Osava M. Energy in a castor bean. 2003. http://www.tierramerica.net/english/2003/0526/ianalisis.shtml.

44. Rajkumar M, Freitas H, Influence of metal resistant plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals, Chemosphere, 2008, 71: 834-842.

45. Barnes D, Baldwin BS, Braasch DA. Degradation of ricin in castor seed meal by temperature and chemical treatment, Ind. Crop Prod., 2009, 29: 509-515.

46. FAO (Food and Agriculture Organization). http://faostat.fao.org, 2005, (online) accessed on November 18, 2016.

47. Mendes MG, Santos CDJr, Dias ACC, Bonetti AM. Castor bean (Ricinus communis L.) as a potential environmental bioindicator, Genetics Mol. Res., 2009, 14(4): 12880-12887.

48. Bonanno G. Ricinus communis as an element biomonitor of atmospheric pollution in urban areas, Water Air Soil Poll., 2014, 225(2): 1852.

49. Gomes SM de S, de Lima VLA, de Souza AP, do Nascimento JJVR, do Nascimento ES. Cloroplast pigments as indicators of lead stress, Eng. Agri. Jaboticabol., 2014, 34(5): 877-884.

50. Li G, Wan SW, Zhou J, Yang ZY, Qin P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels, Ind. Crop Prod., 2010, 31(1): 13-19.

51. Sun Y, Niu G, Osuna P, Ganjegunte G, Auld D, Zhao L, Peralta-Videa JR, Gardea-Torresdey JL. Seedling emergence, growth, and leaf mineral nutrition of Ricinus communis L. cultivars irrigated with saline solution, Ind. Crops Prod., 2013, 49: 75-80.

52. Pinheiro HA, Silva JV , Endres L, Ferreira VM, Camara CA, Cabral FF, Oliveira JF, de Carvalho LWT, dos Santos JK and Filho BGS. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions, Ind. Crops Prod., 2008, 27: 385-392.

53. Wu XH, Zhang HS, Gang L, Liu XC, Qin P. Ameliorative effect of castor bean (Ricinus communis L.) planting on physic-chemical and biological properties of seashore saline soil, Ecol. Eng., 2012, 38: 97-100.

54. Zhang H, Guo Q, Yang J, Ma J, Chen G, Chen T, Zhu G, Wang J, Zhang G, Wang X, Shao C. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil, Ecotoxicol. Environ.Saf., 2016, 133: 57-62.

55. Chhajro MA, Rizwan MS, Guoyong H, Jun Z, Kubar KA, Hongqing H. Enhanced accumulation of Cd in castor (Ricinus communis L.) by soil-applied chelators, Int. J. Phytoremed., 2015, 18: 664-670.

56. Ananthi TAS, Manikandan PNA. Potential of rhizobacteria for improving lead phytoextraction in Ricinus communis. Remediation, 2013, 24(1): 99-106

57. Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation, Biotechnol., 2012, Adv. 30: 1562-1574.

58. Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils, Biotechnol. Adv., 2011a, 29: 248-258.

59. Ma Y, Rajkumar M, Luo Y, Freitas H. Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake, J. Hazard. Mater., 2011b, 196: 230-237.

60. Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant Soil, 2002, 245: 35-47.

61. Jones DL, Dennis PG, Owen AG, van Hees PAW, Organic acid behavior in soils-misconceptions and knowledge gaps, Plant Soil, 2003, 248: 31-41.

62. Rajkumar M, Ae N, Prasad MNV, Freitas H. Potential of siderophore producing bacteria for improving heavy-metal phytoextraction, Trends Biotechnol., 2010, 28 (3): 142-149.

63. Romeiro S, Lagoa AMMA, Furlani PR, de Abreu CA, de Abreu MF, Erismann NM. Lead uptake and tolerance of Ricinus communis L., Braz. J. Plant Physiol., 2006,18 (4): 483-489.

64. Wang C, Li G, Zhang Z, Peng M., Shang Y, Luo R, Chen Y. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers, Biochem. Syst. Ecol., 2013, 51: 301-307.

65. Wu S, Shen C, Yang Z, Lin B, Yuan J. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils, Int. J. Phytoremed., 2016, 18(11): 1148-1154. doi:

66. Lu XY, He CQ. Tolerance, uptake and accumulation of cadmium by Ricinus communis L., J. Agro-Environ. Sci., 2005, 24: 674-677.

67. Mahmud R, Inoue N, Kasjima S, Shahenn R. Assessment of potential indigenous plant species for the phytoremediation of arsenic- contaminated areas of Bangladesh, Int. J. Phytoremed., 2008, 10: 119-132.

68. Malarkodi M, Krishnaswamy R, Chitdeswari T. Phytoextraction of nickel contaminated soil using castor phytoextractor, J. Plant Nutrition, 2008, 31(2): 219-229

69. Huang G, Guo G, Yao S, Zhang N, Hu H. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress, Int. J. Phytoremed., 2016, 18(1): 33-40.

70. Andreazza R, Bortolon L, Pieniz S, Camargo FAO. Use of high-yielding bioenergy plant castor bean (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils, Pedosphere, 2013, 23(5): 651-661.

71. Pandey VC. Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites, Ecol. Eng., 2013, 57: 336-341.

72. Glick BR. Using soil bacteria to facilitate phytoremediation, Biotechnol. Adv., 2010, 28: 367-374.

73. Makeswari M, Santhi T. Tannin gel derived from Leaves of Ricinus communis as an adsorbentfor the Removal of Cu (II) and Ni (II) ions from aqueous solution. International Journal of Modern Engineering Research 3 (5), 3255-3266.

74. Anastasi U, Sortino O, Cosentino SL, Patane C Seed yield and oil quality of perennial castor bean in a Mediterranean environment. International Journal of Plant Production, 2015, 9(1): 99-116.

75. Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environmental Management, 2016, 174,14-25.

76. Ma, Y., Rajkumar, M., Rocha, I., Oliveira, R.S., Freitas, H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi- metal polluted soils. Front. Plant Sci. 2015, 5, 757.

77. Baishya M, Kalita MC. Phytoremediation of crude oil contaminated soil using two local varieties of castor oil plant (Ricinus communis) of Assam, Int. J. Pharma Bio. Sci., 2015, 6(4): 1173-1182.

78. Schneider J, Bundschuh J, do Nascimento CW. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site, Sci. Total Environ. 2016, 572: 86-97.

79. Agbogidi, O.M. and Egbuchua, C.O. Heavy metal concentrations of soil contaminated with spent engine oil in Asaba, Delta State. Acta Agronomica Nigeriana 2010, 10 (1): 65-69.

80. Vwioko DE, Anoliefo GO, Fashemi SD. Metal concentration in plant tissues of Ricinus communis L. (Castor oil) grown in soil contaminated with spent lubricating oil, J. Appl. Sci. Environ. Manage., 2006, 10(3): 127-134.

81. Vwioko DE, Fashemi DS. Growth response of Ricinus communis L. (castor oil) in spent lubricating oil polluted soil, J.Applied Sci. Environ. Manage., 2005, 9(2): 73-79.

82 Niu Z, Sun L, Sun, T. Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard, Adv. Environ. Biol., 2009, 3: 255-262.

83 Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X-E. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil, Bioresour. Technol., 2011, 102(23): 11034-11038.

84 Li G, Zhang H, Wu X, Shi C, Huang X, Pei-Qin P. Canopy reflectance in two castor bean varieties (Ricinus communis L.) for growth assessment and yield prediction on coastal saline land of Yancheng District, China, Ind. Crops Prod., 2011, 33: 395-402.

85. Haung H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X-E. The phytoremediation potential of Bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil, Bioresour. Technol., 2011, 102: 11034-11038.

86. Daniela K, Jakub E, Lukas P. Effect of compost amendment on heavy metals transport to plant, MendelNet, 2015, pp. 249-254.

87. Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge, Environ. Int., 2009, 35: 142-156.

88. Bosiacki M, Kleiber T, Kaczmarek J. Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates, Arch. Environ. Prot., 2013, 39 (3): 47-59.

89. Giordani C, Cecchi S, Zanchi C. Phytoremediation of soil polluted by nickel using agricultural crops, Environ. Manage., 2005,. 36(5): 675-681.

90. Wang S, Zhao Y, Guo J, Zhou L. Effects of Cd, Cu and Zn on Ricinus communis L. growth in single element or co-contaminated soils: Pot experiments, Ecol. Eng., 2016, 90: 347-351.

91. Coscione AR, Berton RS. Barium extraction potential by mustard, sunflower and castor bean, Scientia Agricola 66, 2009, pp. 59-63.

92. Bonanno G. Ricinus communis as an element Biomonitor of atmospheric pollution in urban areas, Water Air Soil Poll., 2014, 225(2): 1852.

93. Costa ET de S, Guilherme LRG, de Melo EEC, Ribeiro BT, Inacio ESB, Severiano EC, Faquin V, Hale BA. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes, Biol. Trace Elem. Res., 2012, 145: 93-100.

94 Martins AE, Pereira MS, Jorgetto AO, Ma UM, Silva RIV, Saeki MJ, Castor GR. The reactive surface of Castor leaf [Ricinus communis L.] powder as a green adsorbent for the removal of heavy metals from natural river water, Applied Surface Sci., 2013, 276: 24-30.

95. Fitz WJ, Wenzel WW. Arsenic transformation in the soil-rhizosphere- plant system, fundamentals and potential application of phytoremediation, J. Biotechnol., 2002, 99: 259-278.

96. Prasad M.N.V. Phytoremediation and biofuels In, E. Lichtfouse (ed.), Sustainable Agriculture Reviews 17, 2015 c Springer International Publishing Switzerland. Page 159-261.

97. Prasad, M.N.V. (Ed) Bioremediation and Bioeconomy. 2016 Elsevier, USA. Pages 698.

98. Tripathi V, Edrisi SA, Abhilash PC. Towards the coupling of phytoremediation with bioenergy production Renewable and Sustainable Energy Reviews 2016, 57 1386-1389.

99 Pandey VC, Bajpai O, Singh N. Energy crops in sustainable phytoremediation, Renew. Sust. Energy Rev., 2016, 54: 58-73.

100 Amouri M, Mohellebi F, Zaid TA, Aziza M. Sustainability assessment of Ricinus communis biodiesel using LCA approach, Clean Techn. Environ. Policy, 2016, DOI 10.1007/s10098-016-1262-4.

101 Bauddh K, Singh K, Singh RP. Ricinus communis L. a value added crop for remediation of cadmium contaminated soil, Bull. Environ. Contam. Toxicol., 2016, 96(2): 265-269.

102 Hadi F, Ali N, Fuller MP. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil. Environ. Sci. Pollut. Res. Int., 2016, 23(20): 20408-20430.

103 Rani P, Kumar A, Arya RC. Phytostabilization of tannery sludge amended soil using Ricinus communis, Brassica juncea and Nerium oleander, J. Soils Sedim., 2016, DOI 10.1007/s11368-016-1466-6.

104 Chhajro MA, Rizwan MS, Guoyong H, Jun Z, Kubar KA, Hongqing H. Enhanced accumulation of Cd in castor (Ricinus communis L.) by soil-applied chelators, Int. J. Phytoremed., 2015, 18: 664-670.

105 Silitonga AS, Masjuki HH, Ong HC, Yusaf T, Kusumo F, Mahlia TM. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study, Ind. Crops Prod., 2016, 85: 274-286.

106 Srinivasarao Ch, Shanker AK, Kundu S, Reddy S. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols, J. Photochem. Photobiol. B: Biol., 2016, 160: 86-95.

107 Wei R, Guo Q, Wen H, Liu C, Yang J, Peters M, Hu J, Zhu G, Zhang H, Tian L, Han X, Ma J, Zhu C, Wan Y. Fractionation of stable cadmium isotopes in the cadmium tolerant Ricinus communis and hyperaccumulator Solanum nigrum, Scientific Reports 6: Art. No. 24309. 2016, doi:

108 Hadi F, Ul-Arifeen MZ, Aziz T, Nawab S, Nabi G. Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition, American-Eurasian J. Agric. & Environ. Sci., 2015, 15(6): 1155-1162.

109 Yashim ZI, Agbaji EB, Gimba CE, Idris SO. Phytoremediation potential of Ricinus communis L. (Castor oil plant) in Northern Nigeria, Int. J. Plant Soil Sci., 2016, 10(5): 1-8.

110 Yi X, Jiang L, Chen J, Liu Q, Yi S. Effects of lead/zinc tailings on photosynthetic characteristics and antioxidant enzyme system of Ricinus communis L, Chinese J. Ecol.,2016 35(4): 880-887.

111 Alexopoulou E, Papatheohari Y, Zanetti F, Tsiotas K, Papamichael I, Christou M, Namatov I, Monti A. Comparative studies on several castor (Ricinus communis L.) hybrids: growth, yields, seed oil and biomass characterization, Ind. Crops Prod., 2015, 75B: 8-13.

112 Armendariz J, Lapuerta M, Zavala F, Garcia-Zambrano E, del Carmen Ojeda M. Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel, Ind. Crops Prod., 2015, 77: 484-490.

113 Aziera ZN, Majid NM. Uptake and translocation of zinc and cadmium by Ricinus communis planted in sewage sludge contaminated soil, UKM J, Publisher Penerbit Univeriti Kebangsaan, Malyasia, 2015.

114 Saadawi S, Algadi M, Ammar A, Mohamed S, Alennabi. Phytoremediation effect of Ricinus communis, Malva parviflora and Triticum repens on crude oil contaminated soil. J. Chemical and Pharmaceutical Research, 2015, 7: 782-786.

115. Bauddh K, Singh K, Singh B, Singh RP. Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil, Ecol. Eng. 2015, 84: 640-652.

116. Bauddh K, Singh RP. Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis, Ecol. Eng., 2015, 74: 93-100.

117 Al-Rmalli WS, Dhamani AA, Abuein MM, Gleza AA. Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.), J. Hazard. Mat., 2008, 152: 955-959.

118 Al‐Harbawy AW, Al‐Mallah MK Production and characterization of biodiesel from seed oil of castor (Ricinus communis L.) plants. International Journal of Science and Technology 2014, 3(9): 508-513.

119 Campbell DN, Na C-I, Rowland DL, Schnell RW, Ferrell JA, Wilkie A. Development of a regional specific crop coefficient (Kc) for castor (Ricinus communis L.) in Florida, USA by using the sap flow method, Ind. Crops Prod., 2015, 74: 465-471.

120. Capuani S, Fernandes DM, Rigon JPG, Ribeiro LC. Combination between acidity amendments and sewage sludge with phosphorus on soil chemical characteristics and on development of Castor bean, Communications in Soil Sci. Plant Analysis, 2015, 46(22): 2901-2912.

121 Grichar WJ, Dotray PA, Trostle CL. Castor (Ricinus communis L.) tol erance to postemergence herbicides and weed control efficacy, Int. J. Agronomy, 2012, Article ID 832749, pp. 5.

122. Hadi F, Ul-Arifeen MZ, Aziz T, Nawab S, Nabi G. Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition, American-Eurasian J. Agric. & Environ. Sci., 2015, 15(6): 1155-1162. DOI: 10.5829/idosi.aejaes.2015.15.6.94212.

123. Kang W, Bao J, Zheng J, Hu H, Du J. Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture, Environ. Sci. Pollut., 2015, R22(10): 7726-7734.

124. Liu S, Zhu Q, Guan Q, He L, Li W. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol., 2015, 183: 93-100.

125. Medeiros, A.M.M.S., Machado, F. and Rubim, J.C. 2015. Synthesis and characterization of a magnetic bio-nanocomposite based on magnetic nanoparticles modified by acrylated fatty acids derived from castor oil. European Polymer Journal 71: 152-163.

126. Chatzakis MK, Tzanakakis VA, Mara DD, Angelakis AN. Irrigation of castor bean (Ricinus communis L.) and sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: impacts on soil properties and seed yield. Water 2011, 3: 1112-1127.

127. Moncada J, Cardona CA, Rincon LE. Design and analysis of a second and third generation biorefinery: The case of castor bean and microalgae, Bioresour. Technol., 2015, 198: 836-843.

128. Ribeiro PR, Zanotti RF, Deflers C, Fernandez LG, Castro R, Ligterink W, Hilhorst HWM. Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis, J. Plant Physiol., 2015, 185: 31-39.

129. Rissato SR, Galhiane MS, Fernandes JR, Gerenutti M, Gomes HM, Ribeiro R, de Almeida MV. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides, BioMed Res. Int., Article ID 549863. 2015, 8.

130. Sanchez N, Sanchez R, Encinar JM , Gonzalez JF, Martinez G. Complete analysis of castor oil methanolysis to obtain biodiesel, Fuel, 2015, 147: 95-99.

131. Severino LS, Mendes BSS, Lima GS. Seed coat specific weight and endosperm composition define the oil content of castor seed, Ind. Crops Prod., 2015, 75B: 14-19.

132. Shi G, Xia S, Ye J, Huang Y, Liu C, Zhang Z. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology, Environ. Experim. Bot., 2015, 111: 127-134.

133 Silva GE , Ramos FT, de Fajra AP, Franca MG. Seeds’ physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis), Environ. Sci. Pollut. Res. Int., 2014, 21(19): 11572-11579.

134 Srivastava SK, Kumar J. Response of castor (Ricinus communis L.) to sulphur under irrigated conditions of Uttar Pradesh, India, Plant Archives, 2015, 15(2): 879-881.

135. Zhang H, Chen X, He C, Liang X, Oh K, Liu X, Lei Y. Use of energy crop (Ricinus communis L.) for phytoextraction of heavy metals assisted with citric acid, I. J. Phytoremed. 2015, 17(7): 632-639.

136. Zhang H, Guo Q, Yang J, Shen J, Chen T, Zhu G, Chen H, Shao C. Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation, Ecotoxicol. Environ. Saf. 2015, 120: 184-192.

137. Atiku FA, Warra AA, Enimola MR. FTIR spectroscopic analysis and fuel properties of wild castor (Ricinus communis L.) seed oil, Open Sci. J. Analyt. Chem., 2014, 1(1): 6-9.

138 Bauddh K. Ricinus communis (castor bean): a multipurpose crop for the sustainable environment, Dream-2047, 2014, 16(11): 31-32.

139 Bauddh K, Singh RP. Studies on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis in presence of vermicompost, chemical fertilizers, biofertilizers and customized fertilizers, Ecol. Eng., 2014, 74: 93-100.

140. Andreazza R, Bortolon L, Pieniz S, Camargo FAO. Use of high-yielding Bioenergy plant castor bean (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils, Pedosphere, 2013, 23(5): 651-661.

141. Chen Y, Liu X, Wang M, Yan X. Cadmium tolerance, accumulation and relationship with Cd subcellular distribution in Ricinus communis L., Acta Scientiae Circumstantiae, 2014, 34(9): 2440-2446.

142, Goyal N, Pardha-Saradhi P, Sharma GP. Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environ. Monit. Assess., 186: 7491.

143. Neto MCL, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG. Dissipation of excess photosynthetic energy contributes to salinity tolerance: A comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas, J. Plant Physiol., 2014, 171(1): 23-30.

144. Magriotis ZM, Carvalho MZ, de Sales PF, Alves FC, Resende RF, Saczk AA. Castor bean (Ricinus communis L.) presscake from biodiesel production: an efficient low cost adsorbent for removal of textile dyes, J. Environ. Chem.Eng., 2014, 2(3): 1731-1740.

145. Rodrigues CRF, Silva EN, Moura R, Viegas RA. Physiological adjustment to salt stress in R. communis seedlings is associated with a probable mechanism of osmotic adjustment and reduction in water lost by transpiration, Ind. Crops Prod., 2014, 54: 233-239.

146. 146. Rigby NM, McDougall AJ, Needs PW, Selvendran RR (1994) Phloem translocation of a reduced oligogalacturonide in Ricinus communis L. Planta 193:536-541.

147. Kammerbauer J, Dick T (2000) Monitoring of urban traffic emissions using some physiological indicators in Ricinus communis L. plants. Arch Environ Contam Toxicol 39:161-166.

148. Zhang H, Guo Q, Yang J, Chen T, Zhu G, Peters M, Wei R, Tian L, Wang C, Tan D, Ma J, Wang G, Wan Y. Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems, J. Environ. Sci., 2014, 26(10): 2048-2055.

149. Akande TO, Odunsi AA, Olabode OS, Ojediran TK. Physical and nutrient characterization of raw and processed castor (Ricinus communis L.) seeds in Nigeria. World Journal of Agricultural Sciences, 2012, 8(1): 89-95.

150. Makeswari M, Santhi T Removal of malachite green dye from aqueous solutions onto microwave assisted zinc chloride chemical activated epicarp of Ricinus communis. Journal of Water Resource and Protection Vol.5 No.2 (2013), Article ID: 28297,17.

151. Pal R, Banerjee A, Kundu R. Responses of castor bean (Ricinus communis L.) to lead stress, Proc. Nat. Acad. Sci. India Section B: Biol. Sci., 2013, 83(4): 643-650.

152. Kathi S, Khan AB. Phytoremediation approaches to PAH contaminated soil. Indian Journal of Science and Technology 2011, 4: 56-63.

153. Perdomo FA, Acosto-Osorio AA, Herrera G, Vasco-Leal JF, Mosquera- Artamonov JD, Millan-Malo B, Rodriguez-Garcia ME. Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents, Biomass Bioenergy, 2013, 48: 17-24.

154. Severino LS, Auld DL. A framework for the study of the growth and development of castor plant, Ind. Crops Prod., 2013, 46: 25-38.

155. Kang W, Zheng J. Ricinus communis, a new copper hyperaccumulator. J. Anhui. Agric Sci. 2011, 39: 1449-1451.

156. Tyagi K, Sharma S, Rashmi R, Kumar S. Study of phyto-chemical constituents of Ricinus communis Linn. under the influence of industrial effluent, J. Pharmacy Res., 2013, 6: 870-873.

157. Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or Castor (Ricinus communis), Int. J. Phytoremed., 2013, 15 (3): 283-298.

158. Yasur J, Rani PU. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology, Environ. Sci. Pollut. Res. Int. 2013, 20(12): 8636-8648.

159 Ananthi TAS, Meerabai RS, Krishnasamy R. Potential of Ricinus communis L. and Brassica juncea (L.) Czern. under natural and in duced Pb phytoextraction, Universal J. Environ. Res. Tech., 2012, 2(5): 429-438.

160. Adhikari T and Kumar A. Phytoaccumulation and Tolerance of Riccinus Communis L. to Nickel. International Journal of Phytoremediation. 2012, 14, 481-492.

161 Bauddh K, Singh RP Growth, Tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental safety, 2012, 85, 13-22.

162 Carreno LVN, Garcia ITS, Raubach WC, Krolow M, Santos CCG, Probst LFD, Fajardo HV. Nickel-carbon nanocomposites prepared using castor oil as precursor: A novel catalyst for ethanol steam reforming, J. Power Sources, 2009, 188: 527-531.

163 dos Santos CH, de Oliveira Garcia AL, Calonego JC, Sposito THN, Rigolin IM. Pb-phytoextraction potential by castor beans in soil contaminated (Potencial de fitoextracao de Pb por mamoneiras em solo contaminado,. Semina Cienc. Agrar., 2012, 33(4): 1427-1433.

164. Lavanya C, Murthy IYLN, Nagaraj G, Mukta N. Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India, Biomass Bioenergy, 2012, 39,204-209.

165. Melo EEC, Guilherme LRG, Nascimento CWA, Penha HGV. Availability and accumulation of Arsenic in oilseeds grown in contaminated soils, Water, Air, & Soil Pollut., 2012, 223(1): 233-240.

166. Prasad KS, Chuang MC, Ho JAA. Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot, Talanta, 2012, 88: 445-449.

167. Severino LS, Auld DL, Baldanzi M, Candido MJD, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavany C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA , Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H. A review on the challenges for increased production of Castor, Agronomy Journal. 104(4): 853-880.

168. Varun M, D’Souza R, Pratas J, Paul MS. Metal contamination of soils and plants associated with the glass industry in North-central India: prospects of phytoremediation, Environ. Sci. Pollut. Res., 2012, 19: 269-281.

169. Rissato SR, Galhiane MS, Fernandes JR, Gerenutti M, Gomes HM, Ribeiro R, de Almeida MV. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides, BioMed Res. Int., Article ID 549863. 2015, 8.

170. Perea-Flores MJ, Chanona-Perez JJ, Garibay-Febles V, Calderon-Dominguez G, Terres-Rojas E, Mendoza-Perez JA, Bucio- Herrera R. Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis), Ind. Crops Prod., 2011, 34(1): 1057-1065.

171. Goytia-Jimenez MA, Gallegos-Goytia CH, Nunez-Colin CA. Relationship among climatic variables with the morphology and oil content of castor oil plant (Ricinus communis L.) seeds from Chiapas, Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 2011, 18: 42-48.

172. Nazir A, Malik RN, Ajib M, Khan N, Siddiqui MF. Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak. J. Bot., 2011, 43(4): 1925-1933

173. Babita M, Maheswari M, Rao LM, Shanker AK, Rao DG. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communisL.) hybrid, Environ. Experim. Bot., 2010, 69(3): 243-249.

174. Bale AT, Adebayo RT, Ogundele DT, Bodunde VT (2013) Fatty acid composition and physicochemical properties of castor (Ricinus communis L.) seed obtained from Malete, Moro local government area, Kwara State. Nigeria. Chemistry and Materials Research 3(12): 11-13.

175. Santhi T, Manonmani S, and Smitha T. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. Journal of hazardous materials,2010, 179: 178-186.

176. Shi G and Cai Q Zinc tolerance and accumulation in eight oil crops Journal of Plant Nutrition 2010, 33(7):982-997.

177. Singh DP, Kumar N, Bhargava SK, Barman SC. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area, J. Environ. Biol., 2010, 31: 421-430.

178. Ye LW, Wood BA, Stroud LJ , Andralojc JP, Raab A, McGrath AS, Feldmann J, Zhao FJ. Arsenic speciation in phloem and xylem exudates of castor bean, Plant Physiol., 2010, 154: 1505-1513.

179. Singh A, Mittal S, Shrivastav a R , Dass S , Srivastava J.N. Biosynthesis of silver nanoparticles using Ricinus communis L. Leaf extract and its antibacterial activity. J. of Nanomaterials and Biostructures 2012, 7:1157 - 1163.

180. Zhi-xin N, Sun LN, Sun TH, Li YS, Wang H. Evaluation of phytoextracting cadmium and lead by sunflower, Ricinus, alfalfa and mustard in hydroponic culture, J. Environ. Sci. (China). 2007, 19: 961-967.

181. Al-Rmalli WS, Dhamani AA, Abuein MM, Gleza AA. Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.), J. Hazard. Mat., 2008, 152: 955-959.

182. Figueroa JAL, Wrobel K, Afton S, Caruso JA, Corona JFG, Wrobel K. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico, Chemosphere, 2008, 70: 2084-2091.

183. Oladoja NA, Aboluwoye OC, Oladimeji YB, Ashogbon AO, Otemuyiwa IO. Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation, Desalination, 2008, 227: 190-203.

184. Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Malkowski E, Gray L. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil, Env. Monit. Assess., 2008, 137(1-3): 101-109.

185. Lu XY, He CQ. Tolerance, uptake and accumulation of cadmium by Ricinus communis L., J. Agro-Environ. Sci., 2005, 24: 674-677.

186. Stephan WU, Schmidke L, Pich A. Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts, Plant and Soil, 1994, 165:181-188.

187. Scarpa A, Guerci A. Various uses of the castor oil plant (Ricinus communis L.). A review, J. Ethnopharmacol., 1982, 5: 117-137.

188. Saadaoui E, Martin JJ, Tlili N, and Cervantes E. Castor bean (Ricinus communis L.): Diversity, seed oil and uses. pages 19-33. In, Ahmad P Ed. Oil Seed Crops: Yield and Adaptations under Environmental Stress, 2017. John Wiley & Sons, Ltd USA.

189. Chandra R, Kumar V. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environ Sci Pollut Res, 2017, 24: 2605 - 2619.

190. Grison C. Combining phytoextraction and ecocatalysis: a novel concept for greener chemistry, an opportunity for remediation. Environ Sci Pollut Res 2015, 22: 5589 - 5591.

191. van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CW, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR. Agromining: Farming for Metals in the Future? Environ Sci Technol. 2015, 49, 4773−4780.

192. Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 2017, 256: 170-185.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 226 43
PDF Downloads 166 166 59