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Introduction

Lactic acid bacteria possesses probiotic properties and are beneficial to human health 
including the following activities: production of antimicrobial substances (bacteriocins, 
organic acids) and adherence to gut mucosa, enhancement of mucosal and host 
immunity; prevention of diarrhea, colon cancer, hypercholesterolemia and general 
improvement of the gastrointestinal microflora (1-2).  The Lactococcus genus includes 
5 species relating to a group of mesophilic lactic acid bacteria.  Lactococcus lactis is the 
only-begotten one which has industrial importance. Lactococci are gram-positive, non-
motile, catalase-negative, microaerophilic, non-spore forming bacteria and are able to 
excreting extracellular polysaccharide substances (3-4). Green plants are considered as 
the natural habitat for L. lactis, but frequently these microorganisms are also isolated from 
milk and dairy products. Lactococci and other lactic acid bacteria are currently used in 
biotechnology for production of a wide variety of fermented foods, especially meat and 
vegetables. L. lactis strains are also used in manufacturing of fermented dairy products, 
such as cream, butter, cheese (5-6). The problem of bacteriophage infection in factories is 
therefore important because of great economic damage (7).

The probiotic properties of different lactic acid bacteria are closely related to their 
biologically active glycoconjugates, which are structural molecules of the bacterial cell 
envelope. These substances are represented by polysaccharides, glycoproteins, teichoic 
and lipoteichoic acids, along with and in complexes with proteins (8-9). Some strains 
of L. lactis produce thermostable proteins bacteriocins with bactericidal properties 
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Abstract
Glycopolymers of two types were isolated from the cell wall of Lactococcus lactis BIM B-1024 by stepwise extraction with cold 
and hot 10% CCl3CO2H and separated by anion-exchange gel chromatography. The following structures of the glycopolymers 
were established by sugar analysis, dephosphorylation with 48% HF, 1D and 2D NMR spectroscopy, and ESI-MS:

	  

Polysaccharides with the same or similar structures to PSI have been found earlier in various Lactobacillus species, whereas, to 
our knowledge, the structure of PSII is new.
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against closely related bacteria (10). These compounds prevent 
the growth of pathogens that makes them promising for use 
as probiotics (11-12). Furthermore, L. lactis is able to reduce 
the level of cholesterol (13). Another practical application 
of lactococci is live vaccines (14-15). Exopolysaccharides 
producing by lactic acid bacteria stimulate the immunity of 
host (16-18). 

In this study, we isolated and studied structures of 
exopolysaccharides from Lactococcus lactis 1024-BIM, which 
appears antibiotic susceptible according to the European Food 
Safety Authority (EFSA) requirements and is perspective for 
application as probiotic and live vaccines. 

Materials and Methods
Isolation of polysaccharides 
A cell wall preparation was obtained by cell disintegration 
using a UZDN_1 ultrasonic disintegrator as described (19). 
Polysaccharides were extracted from the cell walls with 10 % 
TCA (1:10 w/v) at 4 °C for 48 h. The mixture was centrifuged, 
the supernatant was dialyzed against distilled water and 
lyophilized to give CE. The sediment was extracted with 10 % 
TCA at 100 °C for 5 min, the supernatant was dialyzed against 
distilled water and lyophilized to give HE. Both polysaccharide 
preparations obtained were dissolved in pyridinium acetate 
buffer and applied to a column (80 ´ 1.6 cm) of TSK HW-40 
(S) using 1% AcOH as eluent and monitoring with Knauer 
differential refractometer. 

The polysaccharide preparations (22 mg) from cold and hot 
extracts were combined and fractionated by anion-exchange 
chromatography on a column (20 × 1 cm) of DEAE-Trisacryl 
M using a stepwise gradient of 0.005, 0.01, 0.1, 0.25, and 
0.5 M hydrogen sodium phosphate pH 6.3. As result, two 
polysaccharides were obtained: PSI eluted in 0.005 M buffer 
(6.1 mg) and PSII eluted in 0.1 M buffer (10.4 mg).

Chemical methods
Hydrolysis was performed with 2 M CF3CO2H (120 °C, 2 h), the 
monosaccharides were analyzed by GLC as the alditol acetates 
on an Ultra 2 capillary column using a Hewlett–Packard 5880 
instrument and a temperature gradient of 180 °C (1 min) 
to 290 °C at 10 °C min-1. The absolute configurations of the 
monosaccharides were determined by GLC of the acetylated 
glycosides with (S)-2-octanol as described (20).

PSII was treated with 48 % HF at 4 °C for 16 h, and the 
products were fractionated on a TSK HW-40 column as 
described above.

NMR spectroscopy
NMR spectra were recorded for solutions in 99.95% D2O after 
deuterium-exchange by freeze-drying from 99.9% D2O. Spectra 
were measured on Bruker DRX-500 and Bruker Avance II 600 
spectrometers with 5 mm broadband inverse probehead at 30 
°C. Sodium 3-(trimethylsilyl)propanoate-2,2,3,3-d4 (δH 0.0, δC 
-1.6) was used as internal standard for calibration. 2D NMR 

experiments were performed using standard Bruker pulse 
programs. The 2D TOCSY and ROESY spectra were recorded 
with a 60 ms duration of MLEV‑17 spin-lock and a 150 ms 
mixing time, respectively. The gradient-selected 1H,13C HMBC 
spectrum was recorded with a 60 ms delay for evolution of 
long-range spin couplings.

Mass spectrometry
High-resolution ESI mass spectra were measured on a Bruker 
micrOTOF II instrument (21). The measurements were done 
in positive or negative ion modes (interface capillary voltage 
–4500 V or 3200 V, respectively); mass range from m/z 50 to 
m/z 3000 Da. Internal calibration was done with Electrospray 
Calibrant Solution (Fluka). A syringe injection was used for 1:1 
acetonitrile/water solutions (flow rate 3 mL min-1). Nitrogen 
was applied as a dry gas; interface temperature was set at 180 
°C.

Results and Discussion
Polysaccharides were isolated from disintegrated cells of L. 
lactis BIM B-1024 by stepwise extraction with 10% CCl3CO2H 
first at 4  °C for 48 h and then at 100  °C for 5 min. The cold 
extract and hot extract were separately dialyzed, lyophilized, 
and purified by GPC on TSK HW-40 (S). Sugar analysis by 
GLC of the alditol acetates revealed similar composition of both 
extracts, which contained ribitol (Rib-ol), glucose, galactose, 
and GalNAc. The d configuration of the monosaccharides was 
determined by GLC of the acetylated (S)‑2-octyl glycosides 
(22).

The NMR spectra suggested that both extracts are mixtures 
of polysaccharides, which were separated by anion-exchange 
chromatography on DEAE-Trisacryl M using a stepwise 
gradient of 0.005 to 0.5 M hydrogen sodium phosphate pH 6.3. 
As result, two polymers were obtained: a neutral polysaccharide 
PSI and an acidic polysaccharide PSII, which were studied by 
1D and 2D NMR spectroscopy.

The 1H and 13C NMR spectra of PSI showed signals for 
anomeric atoms at δH 4.46-4.92 and δC 101.1-104.6 of five 
monosaccharide residues designated units A-E. Tracing 
connectivities in the 2D 1H,1H COSY, 1D and 2D 1H,1H TOCSY, 
and 1H,13C HSQC spectra enabled assignment of the 1H and 13C 
NMR signals of PSI (Table 1). The 1H and 13C NMR chemical 
shift data combined with data of linkage and sequence analyses 
by 1D NOE, 2D ROESY, and 2D 1H,13C HMBC experiments 
(not shown) revealed the following structure of PSI:

This structure has been established earlier for an 
exopolysaccharide of Lactobacillus delbrueckii subsp bulgaricus 
291 (23). Also, exopolysaccharides with similar structures 
differing in O-acetylation of one of the glucose residue or 
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Table 1. 1H and 13C NMR chemical shifts (δ, ppm) of the PSI, PSII and oligosaccharide obtained after dephosphorylation of PSII 
(OS1)
Sugar residue H-1

C-1
H-2
C-2

H-3
C-3

H-4
C-4

H-5
C-5

H-6
C-6

PSI
→4)-β-D-Galp-(1→	 (A) 4.52

104.6
3.59
72.0

3.77
73.2

4.03
78.6

3.80
76.7

3.94/3.84
61.4c

→4)-β-D-Glcp-(1→	 (B) 4.63
103.4

3.37
74.2

3.68
75.5

3.68
79.7

3.61
76.1

3.84/3.99
61.2c

→4,6)-α-D-Glcp-(1→	 (C) 4.92
101.1

3.61
72.8

3.86
72.5

3.80
79.1

4.40
70.8

4.16/4.00
68.4

→4)-β-D-Glcp-(1	 	               (D) 4.55
103.5

3.38
74.0

3.68
75.6

3.68
79.7

3.61
76.0

3.84/3.99
61.3c

β-D-Galp-(1	 (E) 4.46
104.2

3.56
72.2

3.67
73.8

3.94
69.8

3.74
76.7

3.76/3.79
62.3

PSII
→3,4,6)-α-D-GalpNAc-(1→             (F) 5.11

94.4
4.50
49.9

3.91
78.2

4.49
76.8

4.04
71.7

4.05/4.12
67.1

→3)-β-D-GalpNAc-(1→                   (G) 4.62
102.5

4.12
52.1

3.84
76.0

4.13
64.7

3.68
76.3

3.77/3.82
62.4

β-D-Glcp-(1→                                  (H) 4.47
105.7

3.29
74.5

3.48
76.9

3.39
71.1

3.42
77.3

3.73/3.90
62.1

β-d-Glcp-(1→	  	              (J) 4.78
103.8

3.36
74.9

3.48
77.2

3.42
71.1

3.37
77.3

3.75/3.90
62.1

→5)-Rib-ol-1-P-(O→ 	              (K) 3.98/4.06
68.0

3.94
72.3

3.77
73.0

3.92
72.2

3.89/4.00
72.0

Oligosaccharide 1
→3,4)-α-D-GalpNAc-(1→ 5.09

95.1
4.50
49.8

3.93
78.0

4.49
76.7

4.08
71.7

3.79
62.0

→3)-β-D-GalpNAc-(1→ 4.59
102.5

4.37
49.5

3.82
76.3

4.13
64.9

3.66
76.4

3.84
61.8

β-D-Glcp-(1→ 4.49
105.8

3.32
74.3

3.49
76.8

3.40
71.1

3.44
77.1

3.73/3.92
62.1

β-D-Glcp-(1→ 4.83
103.3

3.37
74.7

3.50
77.2

3.43
71.1

3.41
77.0

3.73/3.92
62.1

→5)-Rib-ol 3.89/3.99
71.9

3.89
72.1

3.72
73.2

3.81
73.2

3.89/4.00
72.0

Figure 1.  Parts of a 2D 1H,13C edHSQC spectrum of PSII. The corresponding parts of the 1H NMR spectrum are shown along the axes. Cross-
peaks of transglycosidic protons are annotated in bold face. Numbers refer to protons of sugar units designated as shown in Table 1.
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containing an additional galactose residue have been found in 
Lactobacillus lactis subsp. cremoris B891 (24) and Lactobacillus 
helveticus K16 (25), respectively. 

The 1H NMR spectrum of PSII showed signals for four 
anomeric protons at δ 4.47-5.11, other sugar ring protons at δ 
3.29-4.50, and two N-acetyl group at δ 2.02-2.09. The 13C NMR 
spectrum of PSII contained signals for four anomeric carbons 
at δ 94.4-105.7, a number of OCH2 groups (C-6 of hexoses 
and GalNAc, C-1 and C-5 of Rib-ol) at δ 62.1-72.0, nitrogen-
bearing carbons at δ 49.8-51.9, other sugar ring and ribitol 
carbons at δ 64.7-78.1, and two N-acetyl groups δ 23.4-23.8 
(CH3) and 176.0 (CO). The 31P NMR spectrum of PSII showed 
signal for a phosphate group at δ 1.0. 

The NMR spectra of PSII were assigned using 1H,1H COSY, 
TOCSY, ROESY, H-detected 1H,13C HSQC, HSQC-TOCSY, 
and 1H,31P HMBC experiments (Table 1), and it was found 
that PSII consists of repeating units contaning two glucose 
and two GalNAc residues and ribitol designated units F-K. 
The a-linkage of GalpNAc (F) and b-linkages of GalpNAc (G) 
and both Glcp (H and J) were established by characteristic H-1 
and C-5 chemical shifts (Table 1) and the presence of H-1/H-2 
cross-peaks for unit F and H-1/H-5 cross-peaks for units G-J in 
the ROESY spectrum (Table 2).

The C-1-C-5 chemical shifts of Glcp (H) and Glcp (J) (Table 
1) were similar to those of non-substituted b-Glcp (22) and, 
hence, both glucose residues occupy the terminal positions in 
side chains. Downfield displacements were observed for the 
signals of C-3, C-4 and C-6 of GalpNAc (F), C-3 of GalpNAc 
(G), C-1 and C-5 of ribitol (K), as compared with their positions 
in the corresponding non-substituted compounds (22). These 
shifts defined the positions of substitution of the sugars and 
ribitol in the repeating unit. 

The sequence of the monosaccharides was determined by 

correlations between the anomeric protons and protons at the 
linkage carbons or the linkage carbons revealed by the ROESY 
and HMBC experiments, respectively (Table 2). The 1H,31P 
HMBC spectrum showed correlations between a phosphate 
group and H-1 of ribitol (K) at δ 1.0/3.98, 4.06 and H-6 of 
GalNAc (G) at δ 1.0/4.05 and 1.0/4.12. Phosphorylation of 
ribitol (K) at O-1 was confirmed by a low-field positions of the 
signal for C-1 at δ 68.0 as compared with its position at δ 63.8 
in non-substituted ribitol (26).

Therefore, the repeating unit of PSII is a branched 
tetrasaccharide-ribitol phosphate having the following 
structure:

In addition to the major signals tabulated in Table 1, the 
NMR spectra showed a number of minor signals, which were 
not assigned owing to their low intensities. These signals may 
belong to monosaccharides from terminal oligosaccharide 
units of PSII. 

Treatment of PSII with 48% HF afforded dephosphorylated 
oligosaccharides, which were fractionated by GPC on TSK 
HW-40 (S) and studied by 1D and 2D NMR spectroscopy (for 
assigned 1H and 13C NMR chemical shifts see Table 2) and high-
resolution ESI MS. Two major compounds were identified as 
tetrasaccharide-ribitol (1) (Hex2HexNAc2Rib-ol1,

(M+Na)+ ion peak at m/z 905.3201, calculated m/z 905.3221) 
and tetrasaccharide (2) (Hex2HexNAc2, (M+Na)+ ion peak at 
m/z 771.2617, calculated m/z 771.2642). Oligosaccharide 2 
resulted evidently from overhydrolysis of a glycosidic linkage 
during dephosphorylation. Structures of compounds 1 and 2 

Table 2. Correlations for anomeric proton in the 2D ROESY and 1H,13C HMBC spectra of PSII

H-1 in sugar 
residue (d)

Correlations to atoms in sugar residue (d)

ROESY HMBC

F H-1 (5.11)

C-1 (94.4)

F H-2 (4.50), G H-4 (4.13), H-3 (3.84) G C-3 (76.0), F C-5 (71.7), C-3 (78.2)

G H-3 (3.84), F H-5 (4.04), H-4 (4.49), H-1 
(5.11)

G H-1 (4.62)

C-1 (102.5)

K C-5 (72.0)

K H-5 (3.89/4.00), G H-1 (4.62), H-2 (4.12), 
H-4 (4.13), H-5 (3.68)

H H-1 (4.47)

C-1 (105.7)

H H-3 (3.48), H-5 (3.42), H-2 (3.29), H-4 (3.39), F H-3 
(3.91)

F C-3 (78.2)

F H-3 (3.91), H H-1 (4.47), H-3 (3.48), H-5 
(3.42), H-2 (3.29)

J H-1 (4.78)

C-1 (103.8)

F H-4 (4.49), J H-3 (3.48), H-4 (3.42), H-5 (3.37) F C-4 (76.8), J C-2 (74.9)

F H-4 (4.49), J H-1 (4.78), H-3 (3.48), H-5 
(3.37)
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confirmed the structure of PSII. 
To the best of our knowledge, the PSII structure is unique 

among known bacterial polysaccharides. Earlier, a cell wall 
polysaccharide having a similar structure of the main chain but 
with only one side chain of a single galactose residue has been 
reported in Lactococcus lactis subsp. cremoris H414 (27). 
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