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Abstract : Pricing of options plays an important role in the financial industry. Investors 
knowing how to price derivative contracts quickly and accurately can beat the market. 
On the other hand market participants constructing their investment strategies with 
the use of options based on techniques that do not assure the highest computational 
speed and efficiency are doomed to failure. The aim of the article is to extend the ex-
isting methodology of pricing correlation options based on the Fourier transform. The 
article starts with a presentation of Carr and Madan’s concept (Carr & Madan, 1999). 
Then other methods of pricing options with the use of the Fourier transform are sum-
marized. Finally, a new approach to pricing derivative contracts is derived and then 
applied to the correlation options.
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Introduction

The rapid development of option markets worldwide in recent years is accompa-
nied by a rise in trading activities of investors and a development of new, highly 
sophisticated, financial products. One direct consequence of such a trend is the 
possibility for buyers and sellers of the derivatives to more efficiently speculate 
on the movements of interest and exchange rates, commodity and equity prices, 
as well as credit ratings of the issuers of bonds. As the capacity for speculation 
using derivatives is growing, increased demand for new instruments allowing 
to hedge against different aspects of risks appears. Options, along with forwards 
and futures, seem to be the best tools that can be used to protect market par-
ticipants against potential capital losses. One of the most interesting type of 
options used for managing risks are exotic options where pay-offs depend on 
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the correlation between asset prices, e.g. exchange options, quotient options, 
correlation options. Some of the contracts, e.g. spread options, are traded on 
exchanges (NYMEX, NYCE, CBOT), others, like quotient and product options, 
can be bought or sold in the OTC market (Zhu, 2000).

The aim of the article is to extend the analysis of the Carr and Madan method 
(Carr & Madan, 1999) for pricing correlation options in the Black and Scholes 
framework (Black & Scholes, 1973). The article consists of several sections. At 
the beginning the martingale method is applied to the valuation of analyzed 
derivatives. Next, the method is modified to the form proposed by Carr and 
Madan (1999). Finally, alternative methods of pricing correlation options, 
which are based on the Fourier transform, are presented and a new model for 
pricing of this type of derivatives is developed.

1. Pricing correlation options using the martingale method

One of the most popular methods of pricing correlation options is based on 
the risk-neural concept (method referred to as BS-M) (Black & Scholes, 1973). 
The method is based on the assumption that the price of the underlying instru-
ment follows geometric Brownian motion. In consequence the natural loga-
rithm of market value of the underlying instrument has normal distribution. 
The joint probability density function of the two-dimensional variable that has 
to be analyzed for the correlation options can be described with the use of an 
elegant formula as follows:
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where: S1T, S2T are the prices of the underlying assets 1 and 2 at time T, σ1, σ2 are 
the standard deviations of rates of return on the assets 1 and 2, r is the risk-free 
rate of return, ρ is the coefficient of correlation and τ = T – t.

One dimensional analogue of the equation (1) for the single asset plain va-
nilla European option can be expressed as:
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for 0 ≤ t ≤ T and τ = T – t.
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In equation (2) the natural logarithm of the market price of the underlying 
security is replaced by market price of the security itself.

If the price of the instrument being the basis for the analyzed contracts is 
equal to 60, the risk-free rate of return amounts to 5%, standard deviation of 
the rates of return is 20% and relative time to expiration, i.e. t/T changes from 
0,5 to 0,9 the distribution of the underlying asset is presented on Figure 1.

As the BS-M method is based on the assumption that the theoretical value 
of the European option equals the value of future payments discounted with 
the risk-free rate with respect to the martingale measure q, the following for-
mulas for the prices of the European calls and puts respectively become valid:

 C S t e E S K= −( )( , ) ( ,0) Ωrτ q
t T t

− + , (3)

 ( )( , ) ( ,0)rτ q
t T T tP S t e E K S− += − Ω , (4)

where: q(.|Ωt) is the probability density function dependent on filtration Ωt, 
K is the strike price of the European option.

Alternatively one can write that:

 ( , ) ( )t T T t TC S t e S K q S dS( )rτ

K

∞
−= −∫  Ω , (5)

 ( )
0

( , ) ( )
K

rτ
t T T t TP S t e K S q S dS−= −∫  Ω . (6)

Figure 1. Distribution of underlying asset prices in the martingale method
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Substituting the analytical expression of probability density function for 
q(ST |Ωt) allows the formulation of the following statements:
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Equations (7) and (8) can be easily extended to the two-dimensional case. 
In the pay-off functions of the correlation call and put options are defined re-
spectively as (Dempster & Hong, 2000):

 1 2 1 1 2 2( , , ) ( ,0) ,0(t t T T tC S S t e E S K S K− + += − −( )) Ωrτ q , (9)

 )1 2 1 1 2 2( , , ) ( ,0) ,0( )t t T T tP S S t e E K S K S− + += − −( Ωrτ q , (10)

the equations allowing for the valuation of the contracts can be formulated 
with the use of equation (1), i.e.:
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where: q(.,.|Ωt) is the joint probability density function dependent on filtra-
tion Ωt.

Unfortunately applying this procedure to the two-dimensional variable in 
order to conclude about the final shape of the pay-off function is highly ineffi-
cient. That is why application of an alternative approach seems to be necessary.

2. Method of P. Carr and D. Madan

Unlike the BS-M concept the method developed by Carr and Madan (1999) is 
based on the Fourier transform (the method is referred to as BS-FTCM). The 
approach applied to the valuation of correlation options consists of several steps. 
At the beginning variables representing spot prices of the underlying assets 
and strike prices of the option (see equations (11) and (12)) are transformed 
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according to the following scheme: s1T = lnS1T, s2T = lnS2T, k1 = lnK1, k2 = lnK2. 
Finally, equations (13) and (14) are written as:
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Limiting the analysis only to call options the equation (13) can be modified 
by parameters α1 and α2 in the following way:

 1 1 2 2
1 2 1 2, ( ), ,( ) ,α k α kmod
t t t tC s s t e C s s t+= , (15)

where: α1 and α2 are the positive constants.
Calculation of the Fourier transform of the modified function Cmod (s1t, s2t, t) 

allows the conclusion that:
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is the two-dimensional characteristic function for the variables s1t and s2t. It 
means that the equation (17) can be expressed as:
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Calculation of the inverse Fourier transform allows the determination of 
the price of the correlation call option, i.e.:
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If the prices of the instruments being the basis for the analyzed contracts 
are equal to 60 and 62, risk-free rate of return amounts to 5%, standard devia-
tions of the rates of return are 10% and 5%, relative time to expiration is equal 
to 0,1, coefficient of correlation ρ = 0 and α1 = α2 = 1 the payoff function of the 
correlation call option is presented on Figure 2.

Although the BS-FTCM method can be applied to pricing correlation op-
tions it is far from being perfect. The biggest problem that appears when using 
the method is associated with the tendency of the subintegral function from 
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equation (20) to rapid oscillation when out-of-the-money (OTM) near-to-ex-
piration contracts are considered. That is why other concepts for pricing op-
tions should be explored.

3. Alternative methods of pricing options utilizing Fourier 
transform

There are many alternative concepts based on the Fourier transform which 
can be used to value derivatives (Orzechowski, 2016). To the best knowledge 
of the author only two of them were applied to pricing correlation options. 
Nevertheless almost all of them can be good alternatives to the BS-M and BS-
FTCM methods. Only the four most important approaches are presented below.

The first method of pricing options using Fourier transform was devel-
oped by Bakshi and Madan (the method is referred to as BS-FTBM) (Bakshi 
& Madan, 2000). In this approach the price of the underlying assets and the 
exercise price of the option in equation (5) are converted to logarithmic values. 
Then the right hand side of a new equation is split into two parts. For each of 
them Fourier transforms are determined and reversed. Finally the theoretical 
value of the option may be obtained with the use of equation (21):
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where: R is the real part of the subintegral function and i is the imaginary part 
of the complex number.

Figure 2. Pay-off function of the correlation call option in the BS-FTCM method
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The second method of pricing options with the use of the Fourier transform 
was derived by Attari (the method is referred to as BS-FTA) (Attari, 2004). This 
approach begins with the generalization of the process responsible for the stock 
price movements. Next equation (5) is transformed into the following formula:

 ∫ ∫ ( ) 1 2( , ) ( , ) ( , ) ( , )τ rτ
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rτ and x(t, T) is the unpredictable shock in prices of the security.

Noting that ( )( , )0 ( , ) ( , ) 1x t T

l

e x t T dx t Tq
∞

≤ ≤∫   allows to treat both π1 and π2 as 

probability density functions. Determining their Fourier and inverse Fourier 
transforms leads directly to the price of the option, i.e.:
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The third method of pricing option using Fourier transform was proposed 
by Bates (the method is referred to as BS-FTB) (Bates, 2006). This approach is 
based on the modification of the previous concept. As before equation (5) is 
transformed but in this case to the following form:
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Next, it is modified and Fourier transformed. Finally, the price of the option 
is determined in the following way:

 
0
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The fourth method of pricing options using Fourier transform was devel-
oped by Lewis (the method is referred to as BS-FTL) (Lewis, 2001). This con-
cept is based on a multiple transformation of the equation (5), conversion of 
the dependent variables to logarithmic values and calculation of the Fourier 
and inverse Fourier transforms. Finally, the price of the option can be deter-
mined with the use of the following formula:
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Although all the methods presented above can be easily applied to the valu-
ation of correlation options (Fan & Wang, 2017), the remaining part of the arti-
cle is devoted only to the new method of pricing options based on the Fourier 
transform and its application to the valuation of correlation options.

4. New method of pricing correlation options using Fourier 
transform

The new method of pricing options using Fourier transform (the method is 
referred to as BS-FTAu) consists of several steps. At the beginning dependent 
variables in equation (5) are converted to logarithmic values. Next, the right 
hand side of the equation obtained is split into two parts, i.e.:
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The first part of equation (27) is Fourier transformed as in BS-FTBM  model, 
i.e.:
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It can easily be seen that e s ds( Ω )Ts
T t Tq

∞

−∞
∫   may be treated both as the char-

acteristic function of sT assuming ξ = –i, i.e. ϕ(–i), and expected value of ST. It 
allows the transformation of the equation (28) to the following form:
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The second part of equation (27) is also Fourier transformed, i.e.:
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Inverting both Fourier transforms allows obtention of the final price of the 
option, i.e.:

 C S t S e e d 
  

ξ= −
0

1 1 ( )
2 ( 1)

rτ iξk ϕ ξ i
π iξ iξ

∞
− − −

+∫R( , )t t . (33)

Before applying equation (33) to the valuation of correlation options it pays 
to transform equation (13) to the form:
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 1 1 2 2

1 2
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k k

C s q qs t e e e e e s s s ds ds
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where: 2 1( )T Tq s s  is the conditional probability density function of s2T given s1T 
and 1( )Tq s  is the probability density function of s1T (Carmona & Durrleman, 
2003).

It is worthy of note that s1T and s2T are normally distributed variables with 
known analytical probability distribution functions.

As the application of the formula (33) to equation (34) is evident the closed-
form formula for the final price of the correlation option is presented without 
derivation (Feunou & Tafolong, 2015).
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It should be noted that equation (35) is correct but only under the previ-
ously introduced assumption that ρ = 0.

 Given the same data as previously the pay-off function of the correlation 
option in the BS-FTAu method can be easily determined (see Figure 3).

Applying the BS-FTAu method for the calculation of the correlation op-
tion has one advantage over other concepts based on the Fourier transform. 
The speed of calculating the final price of the option is greater than in other 
approaches.

Figure 3. Pay-off function of the correlation call option in the BS-FTAu method

Price of underlying asset (S2)

Price of underlying asset (S1)

Payo�

100

50

50
50

40

40

60

60

70

70

80

80

0



27A. Orzechowski, Pricing correlation options: from the P. Carr and D. Madan…

It is worth noting that the presented method can be easily applied to other 
models of pricing options, e.g. jump-diffusion models (Kou, 2002; Merton, 
1976), pure jump models (Carr, Geman, Madan, & Yor, 2002; Kirkby, 2017; 
Madan, Carr, & Chang, 1998). The biggest benefits resulting from the applica-
tion of the Fourier transform and the BS-FTAu method to the pricing of op-
tions, however, appear in stochastic volatility models (Heston, 1993; Hull & 
White, 1987; Stein & Stein, 1991).

Conclusions

Pricing derivatives is an important issue in the financial industry. For that 
reason efficiently functioning methods allowing for the valuation of the con-
tracts constructed on the basis of laws whose execution may be demanded by 
one party from the other attracts the particular attention of many researchers.

In this article several methods of pricing options based on the Fourier trans-
form were presented and two of them were applied to the valuation of corre-
lation options. The first approach, i.e. the one proposed by Carr and Madan 
(1999) seems to be inefficient due to the fact that the subintegral function in 
equation (20) becomes highly oscillatory, especially for the OTM near-to ex-
piration options. In consequence, alternative methods have to be explored. 
Although many concepts in this field were developed, only one, proposed by 
the author, was fully derived in the article. The method allows the pricing of 
the correlation options more efficiently. The main reasons for the superiority of 
the method over other approaches are: a more efficient scheme of calculating 
the Fourier transform and replacing the joint probability density function with 
the two other probability density functions. In consequence a new and better 
method based on the Fourier transform which can be applied to the valuation 
of the correlation options is proposed.
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