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Abstract: One of the central tasks of credit institutions is credit risk assessment, in which the estima-
tion of the probability of default is an important element. The size of an institution’s credit portfolio 
can decrease as a result of early repayments, which changes the probability of default over time. 
Prognosis of the probability of default should therefore also take into consideration the prognosis of 
early repayments. In this paper, methods of evaluating the probability of default over time, using 
competing risks regression models, are considered. Methods of evaluation for models of default over 
time are proposed. A sample of retail credits, provided by a Polish financial institution, was empiri-
cally examined. 
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1. Introduction 

Survival analysis was introduced to credit scoring by Narain in 1992. Two ad-
vantages of survival analysis are its ability to model the probability of default over 
time and the ability to deal with censored observations. Sources of censored observa-
tions include the end of, and early repayments during, the follow-up period, and in 
some credit portfolios the number of early repayments is many times greater than the 
number of defaults. 

Such heavy censoring during follow-up can cause biased estimates of the mod-
els’ parameters in classic survival analysis, in which there is also the unverifiable 
assumption of the independence of the events of interest and censoring, which would 
be debatable in the case of risk of default and risk of early repayment. Another prob-
lem is time-scale; time is assumed to be a continuous random variable, whereas cred-
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it repayment is measured in a finite number of instalments. As a result, the same 
default time can be recorded for more than one credit, creating tied observations. 
Competing risk analysis, which is an extension of classic survival analysis for more 
than one event, allows these problems to be overcome. 

In this paper, the use of competing risks models in the prediction of defaults over 
credit life, in the presence of early repayments, is considered. A sample of 5,000 
consumer credit accounts from a 24-month personal loan portfolio of a Polish finan-
cial institution is investigated, with the cohort of credits observed for 15 months. The 
characteristics of both credit and creditor were used as covariates in the regression 
models, with five such models for competing risks developed and compared: cause- 
-specific hazard regression, subdistribution hazard regression, mixture models, verti-
cal modelling, and regression based on pseudo-observations. The final discussion 
focuses on the usefulness of these models in predicting the probability of default.  

2. Competing risks 

In survival analysis, time to event is the object of study; in the competing risks sce-
nario we assume there is a single lifetime for each individual, but events may be of 
different types or have different causes [Lawless 2003]. Every event can be assigned 
one, and only one, cause from a given set of causes [Crowder 2001]. If only one type 
of event is of particular interest, all other events can be summarised into a single 
category of competing risks, creating two types of events: events of interest and 
competing risks.  

There are two approaches to competing risks: the first analyses a bivariate varia-
ble of time and type of event, the second a multivariate latent variable of unobserved 
times to different types of events. 

2.1. First approach 

Let (𝑇,𝐶) be a bivariate random variable in which 𝑇 is a continuous variable repre-
senting time of the first event and 𝐶 = 𝑗 (𝑗 = 0, 1, … ,𝑝) is a discrete variable denot-
ing the type of the first event (𝑗 = 1, … ,𝑝) [Pintilie 2006; Crowder 2001]. It is as-
sumed that one, and only one, event type is assigned to every event from the given 
set of 𝑝 event types. If the time of observation for some units is earlier than the time 
of the first event, we have encountered right censoring. 

In such a situation, 𝐶 = 0 and 𝑇𝑐 is the time at which the observation was cen-
sored, and the only thing we know is that 𝑇 > 𝑇𝑐. Due to the right censoring, the 
variable (𝑇,𝐶) is only partially observable. We observe a pair (min {𝑇,𝑇𝑐},𝐶); as  
a result, the joint distribution of (𝑇,𝐶) is difficult to identify and can be estimated 
only by making assumptions, often unverifiable. 

Marginal and conditional distributions of the bivariate random variable can be 
expressed in relation to the joint distribution as 
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 𝑃(𝑇 = 𝑡|𝐶 = 𝑗) = 𝑃(𝑇=𝑡,𝐶=𝑗)
𝑃(𝐶=𝑗)

  (1) 

and 

 𝑃(𝐶 = 𝑗|𝑇 = 𝑡) = 𝑃(𝑇=𝑡,𝐶=𝑗)
𝑃(𝑇=𝑡)

, (2) 

where 𝑃(𝐶 = 𝑗) specifies the marginal distribution of the type of the first event and 
𝑃(𝑇 = 𝑡) is the marginal distribution of the time of the first event. The subdistribu-
tion function of event type 𝑗 (cumulative incidence function (CIF)) is the probability 
that event type 𝑗 will occur at or before time 𝑡 

 𝐹𝑗(𝑡) = 𝑃(𝑇 ≤ 𝑡,𝐶 = 𝑗). (3) 

Subdistribution is not a proper distribution because 

 𝑙𝑙𝑙𝑡→∞ 𝐹𝑗(𝑡) = 𝑃(𝐶 = 𝑗) ≤ 1. (4) 

The equality 𝑃(𝐶 = 𝑗) = 1 holds if there is only one type of event, i.e. that there 
are no competing risks. 

The subsurvivor function is given by 

 𝑆𝑗(𝑡) = 𝑃(𝑇 > 𝑡,𝐶 = 𝑗). (5) 

The subdistribution and subsurvival functions are related by 

 𝐹𝑗(𝑡) + 𝑆𝑗(𝑡) = 𝑃(𝐶 = 𝑗). (6) 

The sum of the subdistribution functions for all types of events is a marginal dis-
tribution function of variable 𝑇 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∑ 𝐹𝑗(𝑡)𝑝
𝑗=1   (7) 

and the sum of the subsurvival functions is a marginal survival function [Lindqvist 
2008 

 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = ∑ 𝑆𝑗(𝑡)𝑝
𝑗=1 .  (8) 

The subdensity function 𝑓𝑗(𝑡) and marginal density 𝑓(𝑡) can be calculated as 

 𝑓𝑗(𝑡) =
𝜕𝐹𝑗(𝑡)

𝜕𝜕
   (9) 

and 

 𝑓(𝑡) = ∑ 𝑓𝑗(𝑡)𝑝
𝑗=1 .   (10) 

The subhazard function defined as 

 ℎ�𝑗(𝑡) = lim𝜕𝜕→0
𝑃(𝑡<𝑇≤𝑡+𝜕𝜕,𝐶=𝑗|𝑇>𝑡)

𝜕𝜕
=

𝑓𝑗(𝑡)

𝑆(𝑡)
 (11) 
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is the hazard of the event type 𝑗 under the condition that the entity survived until  
time 𝑡, being the risk of all types of events 𝑗 = 1, … ,𝑝. 

The hazard function in the marginal distribution of 𝑇, also called the overall haz-
ard rate, is defined as 

 ℎ(𝑡) = lim𝜕𝜕→0
𝑃(𝑡<𝑇≤𝑡+𝜕𝜕|𝑇>𝑡)

𝜕𝜕
= 𝑓(𝑡)

𝑆(𝑡)
   (12) 

and the sum of the subhazards is 

 ℎ(𝑡) = ∑ ℎ�𝑗(𝑡)𝑝
𝑗=1 .  (13) 

The subdistribution function (3) for event type 𝑗 can be expressed by the subhaz-
ard function as 

 𝐹𝑗(𝑡) = ∫ ℎ�𝑗(𝑢)𝑆(𝑢)𝑑𝑑𝑡
0 , (14) 

here 𝑆(𝑡) can be expressed as 

 𝑆(𝑡) = exp � −�∫ ℎ(𝑢)𝑑𝑑𝑡
0 ��. (15) 

Gray [1988] proposed another type of hazard function – the hazard of subdistri-
bution: 

 ℎ𝑗∗(𝑡) = 𝑙𝑙𝑙𝜕𝜕→0
𝑃((𝑡<𝑇≤𝑡+𝜕𝜕,𝐶=𝑗|𝑇>𝑡) ∨ (𝑇≤𝑡 ∧ 𝐶≠𝑗))

𝜕𝜕
=

𝑓𝑗(𝑡)

1−𝐹𝑗(𝑡)
 ,  (16) 

which is the probability of the occurrence of event type 𝑗 during the time interval 
(𝑡, 𝑡 + 𝜕𝜕), under the condition that the entity has not experienced any such event 
before time 𝑡 nor has experienced any other type of event before time 𝑡 [Pintilie 
2006]. Individuals failing before time 𝑡 from any event not of type 𝑗 remain in the 
risk set for all future event times. The subdistribution function (3) can be directly 
derived from the hazard of subdistribution 

 𝐹𝑗(𝑡) = 1− exp (−∫ ℎ𝑗∗(𝑢)𝑑𝑑𝑡
0 ). (17) 

2.2. Second approach 

Another approach to competing risks assumes that each event type 𝑗 is assigned an 
event of time 𝑇𝑗 . Only the first event is observed. 𝑻 is a multivariate latent random 
variable 𝑻 = (𝑇1,𝑇2 , …𝑇𝑝) of 𝑝 unobserved event times. Variables 𝑇𝑗  (𝑗 = 1, … ,𝑝) 
are continuous and 𝑃�𝑇𝑗 = 𝑇𝑘� = 0 for all 𝑗 ≠ 𝑘 [Crowder 2001]. Two situations 
should be considered: the scenario with independent 𝑇𝑗  and the scenario with possi-
ble dependency between 𝑇𝑗 . 

The joint distribution function of 𝑻 

 𝐺(𝒕) = 𝑃(𝑻 ≤t)  (18) 
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is the probability that each of the 𝑇𝑗  variables is lower or equal to 𝒕 = (𝑡1, t2, … , 𝑡𝑝) 
and 

  𝐺̅(𝒕) = 𝑃(𝑻 > t)  (19) 

is the joint survival function. Marginal distributions specified by marginal distribu-
tion functions 

 𝐺𝑗�𝑡𝑗� = 𝑃(𝑇𝑗 ≤ 𝑡𝑗) (20) 

and marginal survival functions 

 𝐺̅𝑗�𝑡𝑗� = 𝑃(𝑇𝑗 > 𝑡𝑗) (21) 

do not define the joint distribution unless 𝑇𝑗  is independent. Tsiatis [1975] demon-
strated that, given any joint distribution with arbitrary dependence between compo-
nent variables, there also exists a different joint distribution with independent com-
ponent variables which has exactly the same marginal distributions as the first 
[Crowder 2001]. An assumption of independence cannot be verified because only the 
first event 𝑇 = min {𝑇1,𝑇2, …𝑇𝑝} can be observed. 

Another observed variable is the discrete variable 𝐶 = 𝑗 (𝑗 = 0,1, … ,𝑝), where 
𝑗 = 0 is a censored observation and 𝑗 = 1, … ,𝑝 is an event type. Marginal distribu-
tions infer how risks would act in isolation (net risk). Marginal distributions do not 
describe events that actually occur, but rather describe events from isolated causes in 
situations in which all other types of events have been removed. However, one 
should note that after the isolation of competing risks, circumstances can change and, 
as a result, a distribution of 𝑇𝑗  observed in isolation could be different to a marginal 
distribution derived from the joint distribution [Crowder 2001]. Peterson [1976] 
proved the relation 𝑆𝑗(𝑡) ≤ 𝐺𝚥� (𝑡𝑗), where 𝑆𝑗(𝑡) is the subsurvival function (5) and 
𝐺𝚥� (𝑡𝑗) is the marginal survival function (21). 

The hazard of the marginal distribution (cause-specific hazard) for event type 𝑗 is 
defined as 

 ℎ𝑗(𝑡) = lim𝜕𝑡→0
𝑃�𝑡<𝑇𝑗≤𝑡+𝜕𝜕�𝑇𝑗>𝑡�

𝜕𝜕
= −  

𝜕𝜕𝜕𝐺̅𝑗(𝑡)

𝜕𝜕
.  (22) 

As we assume that 𝑇𝑗  (𝑗 = 1, … ,𝑝) are independent, then cause-specific hazards 
are equal to subhazards, for all 𝑡 and 𝑗 [Pintilie 2006]. Consequently, 

  𝐺̅(𝒕) = ∏ 𝐺̅𝑗(𝑡𝑗)𝑝
𝑗=1 ,  (23) 

where 𝐺̅(𝒕) is the joint survival function (19) and G�𝑗�𝑡𝑗� are marginal survival func-
tions of 𝑇𝑗  (21) [Cox, Oakes 1984; Lindqvist 2008]. 
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3. Methods 

Since the first applications of survival analysis to credit scoring, a range of compet-
ing risks models of default and early repayment have been developed. Banasik et al. 
[1999] and Stepanova and Thomas [2002] used the Cox Proportional Hazards mod-
els separately for both default and early repayment. Deng et al. [2000], Pavlov 
[2001], and Ciochetti et al. [2002] examined the joint risks of default and early re-
payment, using the Cox model for overall hazard (12). This function was calculated 
as the sum of the subhazards for default and early repayment. 

Steinbuks (2015) used extensions of the Cox PH model to investigate the effect 
of prepayment regulations on the termination of subprime mortgages. With the popu-
larity of the Cox models, other regression models for competing risks received very 
little attention. In this article, regression models for competing risks in credit risk 
assessment are investigated, using models which were originally developed in biosta-
tistics. Of the methods presented in the literature, the five most popular regression 
methods reviewed by Haller et al. [2013] were chosen. These are: cause-specific 
hazard regression, subdistribution hazard regression, mixture models, vertical model-
ling, and regression based on pseudo-observations. 

3.1. Cause-specific hazard regression 

Prentice et al. [1978] proposed modelling cause-specific hazards (22) using Cox-type 
regression [Cox 1972], assuming proportional cause-specific hazards for all types of 
events 

 ℎ𝑗(𝑡|𝑋) = ℎ𝑗0(𝑡)exp (∑ 𝛽𝑘𝑋𝑘)𝑚
𝑘=1 .  (24) 

Here, ℎ𝑗0(𝑡) is a cause-specific baseline hazard for event type 𝑗, 𝑋 =
(𝑋1,  𝑋2, … ,𝑋𝑚) is a vector of covariates, and 𝛽 = (𝛽1, … ,𝛽𝑚) is a vector of regres-
sion coefficients for event type 𝑗. Maximum partial likelihood estimation of the re-
gression coefficients can be conducted by the iterative Newton-Raphson algorithm. It 
is assumed that, at each particular time point, only one event type 𝑗 occurs. When 
time is not a strictly continuous variable, i.e. when the time of event 𝑗 is equal for two 
or more units in a dataset, then the problem of tied event times occurs and a modifi-
cation of the approximation algorithm is needed [Therneau, Grambsch 2000]. 

The model assumes proportionality of cause-specific hazards, which means that, 
for two individuals with vectors of covariates 𝑋 and 𝑋∗, the ratio of their hazard rates is 

 
ℎ𝑗(𝑡|𝑋)
ℎ𝑗(𝑡|𝑋∗)

=
ℎ𝑗0(𝑡)exp (∑ 𝛽𝑘𝑋𝑘)𝑚

𝑘=1
ℎ𝑗0(𝑡)exp (∑ 𝛽𝑘𝑋𝑘

∗)𝑚
𝑘=1

= 𝑒𝑒𝑒 (∑ 𝛽𝑘(𝑋𝑘 − 𝑋𝑘∗))𝑚
𝑘=1 ,  (25) 

which is a constant over time. A number of graphical methods and tests have been 
proposed in the literature to check this assumption (e.g. [Pintilie 2006; Li et al. 
2015]). In this paper, omnibus tests proposed by Li et al. (2015) are used. The ad-
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vantage of this method is that the same type of test can also be used to check the 
proportionality of subdistribution hazards in the Fine-Gray model (described later). 

In the CoxPH model only the event type 𝑗 is analysed, with all competing risks 
assumed to be censored observations. The cause-specific hazard for event type 𝑗 is 
modelled as if this event were the only possible one. The effect of covariates on the 
cause-specific hazard cannot be translated directly on the CIF (see (3)). To estimate 
the cumulative incidence function, the Cox PH models for cause-specific hazards 
have to be estimated for each type of event. Beyersmann and Schumacher [2007], in 
the case of two competing risks (event of interest (𝑗 = 1) and all competing risks 
combined (𝑗 = 2)), expressed the cumulative incidence function for the event of 
interest in terms of cause-specific hazards of two risks. The cumulative incidence 
function for the event of interest (𝐶 = 1) can be expressed as 

 𝐹1(𝑡) = ∫ ℎ1(𝑢)𝑡
0 exp �− �∫ ℎ1(𝑢)𝑡

0 + ∫ ℎ2(𝑢)𝑡
0 ��𝑑𝑑.  (26) 

3.2. Subdistribution hazard regression 

The hazard of subdistribution (16) can be modelled by regression, as developed by 
Fine and Gray [1999]. This is a Cox-type regression 

 ℎ𝑗
∗(𝑡|𝑋) = ℎ𝑗0

∗(𝑡)exp (∑ 𝛽𝑘𝑋𝑘).𝑚
𝑘=1   (27) 

Here, ℎ𝑗0
∗(𝑡) is the baseline hazard of subdistribution. The difference in estima-

tion of parameters between the Cox PH model (24) and the Fine-Gray model (27) is 
in the definition of the risk set needed for the partial likelihood. In the Cox model, the 
risk set is the set of individuals still at risk at 𝑡, whereas in the Fine-Gray model, the 
risk set comprises those units who did not experience the event of interest by time 𝑡 
and those who experienced a competing event before time 𝑡. 

Additionally, for the partial likelihood, in the Fine-Gray model, weights are add-
ed such that units who experience the competing risk at time 𝑡 have wages after time 
𝑡 which decrease over time from one to zero. Thus the share of the units who experi-
enced competing risks decreases in the likelihood function (c.f. [Pintilie 2006,  
pp. 87-92]). The Fine-Gray model assumes the proportionality of hazards of subdis-
tributions (c.f. (25)), but Grambauer et al. [2010] showed that a subdistribution haz-
ard regression model has a proper interpretation, even when subdistribution hazards 
are not proportional. On the basis of equation (17), the cumulative incidence function 
(3) for the Fine-Gray model can be directly estimated as 

 𝐹𝑗(𝑡|𝑋) = 1− 𝑒𝑒𝑒 (−∫ ℎ𝑗∗(𝑢|𝑋)𝑑𝑑)𝑡
0 .  (28) 
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3.3. Mixture models 

Larson and Dinse [1985] based their method on the conditional distributions present-
ed in equation (1). The transformation of equation (1) gives the joint distribution of 
event types 

 𝑃(𝑇 = 𝑡,𝐶 = 𝑗) = 𝑃(𝐶 = 𝑗)𝑃(𝑇 = 𝑡|𝐶 = 𝑗)    (29) 

as a mixture of the marginal distribution of the types of event and the conditional 
distribution of the times of the accordant type of event, given the type of event. The 
disadvantage of this method is that an estimated probability of type of event 𝑃(𝐶) 
depends on the length of follow-up [Nicolaie et al. 2010]. 

A number of different distributions can be used for each of the two components 
of a mixture model. In this paper, logistic regression will be used for the distribution 
of types of events and the Cox PH model for the conditional distribution of times to 
the given type of event. The sets of covariates for both component models can be 
different. In the case of two types of risks, with 𝐶 = 1 as the risk of interest and 
𝐶 = 2 for all competing risks, the probability of the event of interest, given a set of 
covariates 𝑌, can be expressed by a binary logistic model 

 𝑃(𝐶 = 1|𝑌) = exp (𝛼0+∑ 𝛼𝑘𝑌𝑘)𝑚
𝑘=1

1+exp (𝛼0+∑ 𝛼𝑘𝑌𝑘)𝑚
𝑘=1

 , (30) 

where 𝛼0 is an intercept, 𝛼 = (𝛼1, … ,𝛼𝑚) is a vector of parameters, and 𝑌 =
(𝑌1, … ,𝑌𝑚) is a vector of covariates. 

The conditional distribution of the survival times for a given type of event and 
given set of covariates can be modelled by a Cox PH model. Survival function for  
a risk of interest 𝐶 = 1 and a given set of covariates 𝑋 can be denoted as 

 S1(t|C = 1, X) = P(T > t|C = 1, X) = exp (−∫ ℎ01(𝑢)𝑒𝑒𝑒(∑ 𝛽𝑘𝑋𝑘𝑟
𝑘=1 )𝑑𝑑)𝑡

0 . (31) 

Here, ℎ01(𝑡) is the null cause-specific hazard function for event type 𝐶 = 1 for 
an individual with all covariates set to zero, 𝑋 = (𝑋1,𝑋2, … ,𝑋𝑟) is a vector of co-
variates, and 𝛽 = (𝛽1,𝛽2, … ,𝛽𝑟) is a vector of regression coefficients for the event 
type 𝐶 = 1. 

The S1(t|C = 1, X) function is a proper survival function, i.e. lim𝑡→∞ S1(t|C =
1, X) = 0. In the Cox model, hazard rates are assumed to be proportional and the 
survival function for the competing risk 𝐶 = 2 can be estimated analogously. 

Finally, the CIF (see (3)) for each event of type 𝑗 can be expressed as 

 Fj(t) = (1 − Sj(t|C = j, X)) ∙ 𝑃(𝐶 = 𝑗|𝑌)  (32) 

(c.f. [Lau et al. 2008]). In the mixture-model approach, no assumption about the in-
dependence of competing risks is necessary, which is an appealing feature of this 
model [Ng, McLachlan 2003]. 
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In the literature, a few algorithms have been proposed to estimate regression co-
efficients of mixture models for competing risks (e.g. [Ng, McLachlan 2003; Chang 
et al. 2007]). For the case of a semiparametric mixture model with proportional haz-
ards for failure time, conditional on type of cause and with a marginal multinomial 
model for type of cause, Chang et al. [2007] provided algorithms for a non- 
-parametric maximum-likelihood estimate (NPMLE) of the parameters of covariates. 
This method assumes the same set of covariates as in the Cox PH and logit models. 
The above algorithm will be used in the empirical part of this study. The method 
proposed by Ng and McLachlan [2003] is not analysed in this paper. 

3.4. Vertical modelling 

Nicolaie et al. [2010] proposed another method to model joint probability. The trans-
formation of equation (2) is 

 𝑃(𝑇 = 𝑡,𝐶 = 𝑗) = 𝑃(𝑇 = 𝑡) ∙ 𝑃(𝐶 = 𝑗|𝑇 = 𝑡). (33) 

The joint distribution is therefore a mixture of the marginal distribution of time to 
all types of events and the conditional distribution for events of type 𝑗, given the 
event time. If the covariate effect has to be included, the marginal distribution of time 
to event can be estimated by the Cox PH model, while the conditional distribution of 
types of events, given the time of the event, can be estimated by a multinomial logit 
model. The whole dataset is used to evaluate the marginal distribution of survival 
times, whereas the conditional distribution of types of events is evaluated only using 
the set of complete observations. Each of the above models is estimated separately 
[Nicolaie et al. 2010]. 

Let the relative subhazard for event type 𝑗 be 

 𝜋𝑗(𝑡) = 𝑃(𝐶 = 𝑗|𝑇 = 𝑡) =
ℎ�𝑗(𝑡)
ℎ(𝑡)

.  (34) 

Here ℎ�𝑗(𝑡) is the subhazard function (11) and ℎ(𝑡) is the overall hazard (12). The 
relative subhazard is the conditional probability that, at time 𝑡, the event is of type 𝑗, 
given that an event occurs at time 𝑡. For each 𝑡, a relationship exists such that 
∑ 𝜋𝑗(𝑡)𝑝
𝑗=1 = 1 [Cox, Oakes 1984; Nicolaie et al. 2010]. 

Taking equation (14), the reversal of equation (34), and adding to the model two 
sets of covariates, 𝑋 and 𝑌, to model the distribution of time to event and type of 
event, respectively, the cumulative incidence function can be expressed as 

 𝐹𝑗(𝑡|𝑋,𝑌) = ∫ 𝜋𝑗(𝑢|𝑌)ℎ(𝑢|𝑋)𝑆(𝑢|𝑋)𝑑𝑑𝑡
0 . (35) 

Relative subhazards 𝜋𝑗(𝑡|𝑌) can be estimated by a multinomial logit model. In 
the case of only two types of events, this model reduces to a binary logit model 

 𝜋𝑗(𝑡|𝑌) = exp (𝛼0+∑ 𝛾𝑘𝐵(𝑡)+∑ 𝛼𝑘𝑌𝑘)𝑟
𝑘=1

𝑙
𝑘=1

1+exp (𝛼0+∑ 𝛾𝑘𝐵(𝑡)+∑ 𝛼𝑘𝑌𝑘)𝑟
𝑘=1

𝑙
𝑘=1

 ,  (36) 
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with time 𝑇 and covariates 𝑌 as independent variables. Here, 𝐵(𝑡) are spline func-
tions of time. Using functions of time is justified by the need to smooth the changes 
of the relative subhazard over time. The use of raw ratios could lead to inexplicable 
variations; Nicolaie et al. [2010] suggested including the interactions of covariates 
with time functions in the model, if data is sufficient. 

The marginal distribution of time to event in (33) can be estimated by a Cox PH 
model for all types of events considered as the event of interest. Thus we do not ob-
serve competing risks here. The overall hazard ℎ(𝑡|𝑋) can be modelled by 

 ℎ(𝑡|𝑋) = ℎ0(𝑡)exp (∑ 𝛽𝑘𝑋𝑘)𝑚
𝑘=1 .  (37) 

Here, ℎ0(𝑡) is an overall baseline hazard, 𝑋 = (𝑋1,𝑋2, … ,𝑋𝑟) is a vector of co- 
-variates, and 𝛽 = (𝛽1,𝛽2, … ,𝛽𝑚) is a vector of regression coefficients. The margin-
al survival function is then 

 𝑆(𝑡|𝑋) = [𝑆0(𝑡)]exp (∑ 𝛽𝑘𝑋𝑘)𝑚
𝑘=1 . (38) 

Here, 𝑆0(𝑡) is the baseline marginal survival function (8) that corresponds to the 
baseline hazard function [Kleinbaum, Klein 2012]. The assumption of proportionali-
ty of the hazards in this model is required. Finally, the cumulative incidence function 
given by (35) is calculated with formulas (36)-(38) as components. 

3.5. Competing risks regression based on pseudo-observations 

The regression based on pseudo-observations directly models a cumulative incidence 
function – a methodology first proposed by Andersen et al. [2003] for multi-state 
models. The main idea of this approach is to replace each censored observation by 
the appropriate proxy, which consequently allows the use of regression methods for 
completed data. In the case of competing risks, such a proxy is a cumulative inci-
dence function for event 𝑗 (3). 

Let 𝑛 be the sample size. At an arbitrary predefined series of time points 
𝑡 ∈ {𝑡1 , … , 𝑡𝐻}, pseudo-observations for unit 𝑖 (𝑖 = 1, … ,𝑛) and event 𝑗 are evaluat-
ed as 

 𝜃�𝑗𝑗(𝑡) = 𝑛𝐹�𝑗(𝑡) − (𝑛 − 1)𝐹�𝑗
(−𝑖)(𝑡).  (39) 

Here, 𝐹�𝑗(𝑡) is the estimated cumulative incidence function for event type 𝑗 at 
time 𝑡, using all units, and 𝐹�𝑗

(−𝑖)(𝑡) is the estimated cumulative incidence function 
derived from all but the 𝑖-th unit. For each unit, both completed and censored,  
𝐻 pseudo-observations are calculated, and the final augmented data set consists of an 
𝑛 × 𝐻 matrix of pseudo-observations. 

Andersen et al. [2003] proposed the use of pseudo-observations as a dependent 
variable in a regression model. However, multiple pseudo-observations for each unit 
can be a source of correlation in a dataset, and therefore a regression model for corre-
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lated data should be chosen. Generalised estimation equations (GEE), introduced by 
Liang and Zeger [1986], are generalisations of generalised linear models for correlat-
ed data. The GEE model for pseudo-observations is 

 𝑔�𝜃�𝑗(𝑡)�𝑋∗� = 𝛼𝑜 +∑ 𝛽𝑘𝑋𝑘𝑚+𝐻
𝑘=1 . (40) 

Here, 𝑔(. ) is a link function, and vector 𝑋∗ includes covariates 𝑋𝑘 (𝑘 =
1, … ,𝑚) and indicators of time points (as dummy variables) 𝑋𝑘 (𝑘 = 𝑚 +
1, … ,𝑚 +𝐻). Estimated regression coefficients for time points can be expressed as 
time-dependent intercepts. As a result, the model can be presented as 

  𝑔�𝜃�𝑗(𝑡)�𝑋� = 𝛼𝑜 + 𝛼𝑜(𝑡) +∑ 𝛽𝑘𝑋𝑘𝑚
𝑘=1 . (41) 

When a complementary log-log link function on (1 − 𝑥) is used, 𝑔(𝑥) =
−log (− log(1 − 𝑥)), then the regression model has the form 

 −log �− log �1− 𝐹𝑗(𝑡)�� = 𝛼𝑜 + 𝛼𝑜(𝑡) +∑ 𝛽𝑘𝑋𝑘𝑚
𝑘=1  (42) 

which can be expressed in a form analogous to a Fine-Gray model (28) as 

 𝐹𝑗(𝑡) = 1− exp {−exp[−(𝛼𝑜 + 𝛼𝑜(𝑡) +∑ 𝛽𝑘𝑋𝑘)𝑚
𝑘=1 ]}.  (43) 

Estimates of the coefficients are based on the estimating equations with a pre-
specified type of working covariance matrix [Andersen, Perme 2010]. Klein and 
Andersen (2005), in the Monte Carlo study, showed that the choice of an independ-
ence-model working covariance matrix for pseudo-observations gives estimations of 
GEE that do not significantly differ from the results for other, more complex working 
covariance matrices. 

4. Model evaluation  

There are two objectives of credit risk assessments. First, the lender wants to know 
the number or percentage of credits that default in each month of the credit’s life; 
second, the lender wants to know which credits are more susceptible to the risk of 
default during these months. A ranking of credits according to the risk of default for 
each time point is therefore needed. To assess which of the evaluated models best 
realises these objectives, two kinds of measures were used in this study. 

Firstly, empirical and theoretical cumulative incidence functions for the whole 
sample were compared at all time points. To measure the mean error of classifica-
tion, the following measure was used 

 (𝑀𝑀𝑀)1/2 = �∑ (𝑦𝑡𝑖 − 𝑦�𝑡𝑖)2
𝐻
𝑖=1 /𝐻 . (44) 

Here, 𝑦𝑡 is an empirical number of defaults at time 𝑡 in the sample and 𝑦�𝑡 is a 
theoretical number of defaults at time 𝑡 according to the given model. 
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Secondly, evaluation of the discriminant power of the estimated models was as-
sessed by the receiving operating curve (ROC) and the area under it (AUC). For any 
binary outcome (𝐷 = {0,1}), where 𝐷 = 1 are cases and 𝐷 = 0 are controls, and  
a continuous predictor 𝑍, the ROC curve is created by plotting, for various thresholds 
𝑘 (𝑘 ∈ 𝑍), true positive rates (𝑇𝑇𝑇(𝑘) = 𝑃(𝑍 > 𝑘|𝐷 = 1)) against false positive 
rates (𝐹𝐹𝐹(𝑘)) = 𝑃(𝑍 > 𝑘|𝐷 = 0). 

In survival analysis, ROC curves can be estimated for different time points (𝑡). 
Moreover, the outcome at time 𝑡 (𝐷(𝑡) = 1) can be considered as the presence of 
the event of interest at time 𝑡 (incident case) or before time 𝑡 (cumulative case). Ad-
ditionally, due to the presence of competing risks and censored observations, controls 
(𝐷(𝑡) = 0) are those units with 𝑇𝑖 > 𝜏, for a large time 𝜏, called static controls, or 
those units with 𝑇𝑖 > 𝑡 (dynamic controls). Finally, predictor 𝑍 can be a fixed predic-
tor (i.e., measured once at time 𝑡 = 0) or measured at each time point 𝑡 for which 
𝐴𝐴𝐴(𝑡) is evaluated (longitudinal predictor). Due to these particularities, in survival 
analysis, time-dependent ROC curves should be used [Blanche et al. 2013]. 𝑅𝑅𝑅(𝑡) 
plots 𝑇𝑇𝑇(𝑘, 𝑡) against 𝐹𝐹𝐹(𝑘, 𝑡) for varying 𝑘. The AUC(t) is defined as 

 𝐴𝐴𝐴(𝑡) = ∫ 𝑇𝑇𝑇(𝑘, 𝑡) �𝜕𝜕𝜕𝜕(𝑘,𝑡)
𝜕𝜕

�∞
−∞ 𝑑𝑑, (45) 

where 𝑇𝑇𝑇(𝑘, 𝑡) = 𝑃(𝑍 > 𝑘|𝐷(𝑡) = 1) and 𝐹𝐹𝐹(𝑘, 𝑡) = 𝑃(𝑍 > 𝑘|𝐷(𝑡) = 0). 

Some modifications of 𝐴𝐴𝐴(𝑡) in comparison to 𝐴𝐴𝐴 are necessary. Blanche  
et al. (2013) reviewed the estimators for time-dependent 𝐴𝐴𝐴(𝑡), with different def-
initions given for the cases, controls, and predictors. In this paper, the cumula-
tive/dynamic approach to compute time-dependent 𝑅𝑅𝑅(𝑡) was applied [c.f. Blanche 
at al. 2013]. The outcomes at time 𝑡 (𝐷(𝑡) = 1) are considered defaults that have 
occurred before time  (𝑇 ≤ 𝑡), whereas controls (𝐷(𝑡) = 0) are units that are free of 
any event before time 𝑡 (𝑇 > 𝑡). The CIF (see (3)) at time 𝑡 = 3 was used as a pre-
dictor. Estimators of the AUC(t) for different approaches to cases, controls, and pre-
dictors are presented in Blanche et al. [2013]. 

6. Data 

In this paper, we investigate the use of competing risks models for a sample of 5,000 
consumer credits granted for 24 months by a Polish financial services organisation. 
All of these credits were granted within a period of 12 calendar months. A cohort of 
credits was observed for 15 months following the origination of the first credit, and 
thus the earliest granted credits were observed for 15 months, while credits granted in 
the 12th calendar month were observed for only 3 months. 

Default was considered as 90 days overdue in payment and is the event of inter-
est. Early repayment was repayment before the indicated end date of the loan and is 
considered a competing risk. Censored observations are those credits for which  
neither default nor early repayment occurred before the end of follow-up. There 
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were 446 creditors who defaulted during the follow-up, 3,454 creditors who repaid 
the credit early, and 1,100 censored observations. The distribution of events and cen-
soring over time is presented in Table 1. 

Table 1. The distribution of defaults, early repayment, and censoring in the cohort of credits  
through to follow-up 

Month of credits’ life 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No. of defaults 0 0 79 50 56 45 39 35 21 27 32 19 22 15 6 
No. of early repayments 129 174 396 368 340 323 409 266 238 248 175 166 115 84 23 
No. of censored observations 0 0 125 110 87 93 120 73 82 88 109 91 61 52 9 

Source: own study. 

Table 2. Variables and their attributes, and the inclusion of covariates in the regression models 

Covariates 
Number of  

% of total 
Attribute not included in the model 

censored defaulted early 
rep. 

Cox 
(def) Cox (e.r.) F-G Mixt. Vert. 

X1_0 132 91 405 13      X1_1 819 270 2537 73  N  N N 
X1_2 149 85 512 15      X2_0 84 54 388 11      X2_1 116 77 523 14      X2_2 574 228 1837 53      X2_3 326 87 706 22      X3_0 106 89 281 10      X3_1 176 85 497 15      X3_2 543 164 1750 49      X3_3 275 108 926 26     N 
X4_0 74 60 350 10      X4_1 133 74 518 15  N  N  X4_2 562 247 1786 52      X4_3 331 65 800 24  N  N N 
X5_0 527 212 1753 50      X5_1 270 92 897 25      X5_2 303 142 804 25      X6_0 47 75 197 6      X6_1 371 244 1232 37  N N N N 
X6_2 682 127 2025 57  N N N N 
X7_0 579 302 1777 53      X7_1 521 144 1677 47 N N  N N 
X8_0 913 402 2932 85      X8_1 69 21 210 6      X8_2 118 23 312 9      X9_0 673 202 1970 57      X9_1 148 104 464 14 N N  N N 
X9_2 279 140 1020 29           

Source: own study. 
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The dataset, in addition to information about payment behaviour, also contains 
typical application characteristics such as amount of credit, amount  of an instalment, 
purpose of the loan, age of the applicant, property, and educational level. These vari-
ables are used in the regression models as covariates. 

To anonymise the data all the variables are denoted by the letter 𝑋 appended with 
consecutive numbers. Covariates were categorised and replaced by dummy variables 
created for each attribute of the variable. Numbers preceded by an underline show 
the number of the attribute. Attributes denoted by _0 are reference groups. To avoid 
collinearity, the reference group for each variable is excluded from the models. Per-
centages of the units with particular attributes of each variable are given in Table 2. 

7. Results 

All analyses were performed using the statistical software R [R Development Core 
Team 2017] and its libraries (survival [Thernau 2017], cmprsk [Gray 2014], NPM-
LEcmprsk [Chen, Chang, Hsiung 2015], goftte [Sfumato, Boher 2017], timeROC 
[Blanche 2015], splines (part of R), pseudo [Pohar Perme et al. 2017], and geepack 
[Højsgaard et al. 2016]). 

The models compared in this paper are based on different principles and require 
the fulfilment of different assumptions. As a result, it is difficult to find one common 
set of criteria for variable selection that could be applied to all. Backward elimination 
is ambiguous in mixture models and can lead to undesirable models with poor per-
formance, while criteria based on likelihood functions, such as the Akaike Infor-
mation Criterion, cannot be used in the GEE models. Due to these difficulties, and in 
order to compare the performance of the estimated models, no variable selection 
methods were implemented. All the variables listed in Table 2 were included in the 
models, except those that did not meet the assumption of proportionality that is re-
quired by most of the models. 

In the first step of the analysis, the proportionality of the hazards for all covari-
ates in the Cox-type models and in the Fine-Gray model were checked by the omni-
bus test proposed by Lin et al. [1993] and Li et al. [2015] (goftte package). In the 
Cox PH model, variables were separately excluded from the model for default (Cox 
def.) and from the/ model for early repayment (Cox e.r.). In the Fine-Gray model  
(F-G) only the variable X6 failed to meet the assumption of proportionality of sub-
hazards. The mixture model, estimated with the use of the NPMLE algorithm (see 
Section 3.3), contains the same set of variables as all of the components: time until 
default, time until early repayment, and probability for type of event. Therefore, all 
variables that did not meet the proportionality assumption for the Cox PH models for 
default or for early repayment were also excluded from mixture model (c.f. Table 2). 

In the vertical approach the Cox model was estimated for all types of events. The 
proportionality assumption was verified for the Cox model with combined events. 
None of the variables were removed from the GEE model for pseudo-observations 
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because, of all the compared models, this was the only one that did not require the 
assumption of proportionality. The variables that were excluded from models due to 
the lack of proportionality are marked in Table 2. Extant variables were applied in 
the models as covariates. 

Table 3. Coefficients for covariates in competing risks models for default 

Cov. 
Cox PH (def.) Cox PH (e.r.) Fine and Gray Mixture model 

Β p-value β p-value β p-value α p-value β1 p-value β2 p-value 

Int. . . . . . . 1.12 0.000 . . . . 

X1_1 -0.35 0.011 . . -0.16 0.250 . . . . . . 

X1_2 0.05 0.759 -0.02 0.643 0.19 0.240 0.29 0.004 0.06 0.343 -0.07 0.088 

X2_1 0.02 0.932 0.06 0.339 0.02 0.920 -0.9 0.000 3.08 0.000 -0.42 0.000 

X2_2 -0.2 0.226 -0.1 0.069 -0.23 0.160 -0.91 0.000 2.69 0.000 -0.53 0.000 

X2_3 -0.35 0.094 -0.27 0.000 -0.36 0.081 -1.21 0.000 2.75 0.000 -0.67 0.000 

X3_1 -0.15 0.355 0.13 0.090 -0.45 0.008 -1.23 0.000 1.00 0.000 -0.37 0.000 

X3_2 -0.79 0.000 0.14 0.030 -0.92 0.000 -1.94 0.000 0.75 0.000 -0.46 0.000 

X3_3 -0.63 0.001 0.16 0.025 -0.61 0.003 -1.89 0.000 0.85 0.000 -0.42 0.000 

X4_1 -0.28 0.114 . . -0.08 0.650 . . . . . . 

X4_2 -0.14 0.412 -0.02 0.515 0.07 0.670 0.32 0.000 0.28 0.022 -0.04 0.133 

X4_3 -0.49 0.036 . . -0.18 0.450 . . . . . . 

X5_1 -0.08 0.564 -0.04 0.326 -0.19 0.170 -0.5 0.000 0.76 0 -0.14 0.001 

X5_2 0.22 0.073 -0.05 0.249 0.39 0.002 0.47 0.000 0.25 0.044 0 0.495 

X6_1 -0.57 0 . . . . . . . . . . 

X6_2 -1.66 0 . . . . . . . . . . 

X7_1 . . . . -0.5 0.000 . . . . . . 

X8_1 -0.36 0.110 0.02 0.784 -0.37 0.100 -0.67 0.000 -0.05 0.427 -0.07 0.184 

X8_2 0.50 0.024 0.03 0.605 -0.63 0.004 -0.93 0.000 -0.04 0.454 -0.02 0.359 

X9_1 . . . . 0.26 0.072 . . . . . . 

X9_2 0.35 0.003 0.05 0.232 0.34 0.004 0.44 0 0.16 0.17 0.1 0.009 

Source: own study. 

The cause-specific hazards for default and for early repayment were modelled by 
the Cox PH regression (21) with the survival package. The coefficients of these mod-
els are presented in Table 3. Both survival functions and baseline hazards for these 
models were used to estimate cumulative incidence functions (22). The coefficients 
of the Fine-Gray model (27) were estimated with the cmprsk package. The mixture 
model (32) was estimated with the use of the NPMLEcmprsk package. The results of 
the estimations are presented in Table 3. 
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Table 3. (continuation). Coefficients for covariates in competing risks models for default  

Vertical model 

GEE model 
Logit model for default 

Cox PH for 
time to any 

event 
Cov. γ p-value Cov. α p-value β p-value Cov. α p-value Cov. β p-value 

Int. 0.87 0.1 X1_1 -0.25 0.123 . . α0 -18.55 0.000 X1_1 -0.17 0.285 

B1(t) -1.94 0.072 X1_2 0.17 0.389 0.02 0.58 α0 (2) -6.14 0.000 X1_2 0.27 0.146 

B2(t) -0.76 0.081 X2_1 -0.1 0.64 0.06 0.352 α0 (3) 15.76 0.000 X2_1 0.17 0.414 

B3(t) -0.43 0.501 X2_2 -0.32 0.087 -0.12 0.025 α0 (4) 16.31 0.000 X2_2 -0.09 0.646 

   X2_3 -0.53 0.029 -0.28 0.000 α0 (5) 16.69 0.000 X2_3 -0.17 0.472 

   X3_1 -0.28 0.159 0.02 0.676 α0 (6) 16.92 0.000 X3_1 -0.27 0.15 

   X3_2 -0.85 0.000 -0.05 0.186 α0 (7) 17.08 0.000 X3_2 -0.58 0.003 

   X3_3 -0.52 0.033 . . α0 (8) 17.21 0.000 X3_3 -0.33 0.163 

   X4_1 -0.07 0.739 0.14 0.01 α0 (9) 17.28 0.000 X4_1 -0.11 0.601 

   X4_2 0.27 0.167 0.04 0.332 α0 (10) 17.38 0.000 X4_2 0.22 0.246 

   X4_3 0.23 0.383 . . α0 (11) 17.49 0.000 X4_3 -0.05 0.855 

   X5_1 -0.27 0.094 -0.04 0.34 α0 (12) 17.56 0.000 X5_1 -0.04 0.793 

   X5_2 0.51 0.000 -0.01 0.895 α0 (13) 17.67 0.000 X5_2 0.41 0.003 

   X6_1 -0.7 0.000 . . α0 (14) 17.75 0.000 X6_1 -0.53 0.000 

   X6_2 -1.77 0.000 . . α0 (15) 17.82 0.000 X6_2 -1.56 0.000 

   X7_1 -0.5 0.000 . .    X7_1 -0.45 0.002 

   X8_1 -0.3 0.233 -0.02 0.777    X8_1 -0.37 0.169 

   X8_2 -0.58 0.016 -0.03 0.669    X8_2 -0.48 0.06 

   X9_1 0.27 0.103 . .    X9_1 0.22 0.171 

   X9_2 0.3 0.026 0.09 0.017    X9_2 0.24 0.083 

α0(t) – time-dependent intercept at time t 

Source: own study. 

In the vertical modelling approach, the Cox PH model for any type of event 
was estimated. Logit models were then estimated only for complete observations 
(see Section 3.4). For variations of relative subhazard (34) over time, cubic  
b-splines (𝑡) with 𝑘 = 3 knots were applied to smooth the variations (Figure 1). 
The interactions of time and covariates were not considered in the model due to 
the large number of covariates used, in comparison with the number of complete 
observations. Estimates of both parts of the vertical model are shown in Table 3 
(continuation).  
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Fig. 1. Empirical relative subhazard, and smoothed by B-splines 

Source: own study. 

In the pseudo-values approach (see Section 3.5), pseudo-observations for all 
units and for 15 time points were calculated (pseudo package). Pseudo-observations 
were used as values of the dependent variable in a GEE model. Estimations were 
made with the geepack package and estimates of the model are given in Table 3 
(continuation). The use of dummy variables for time points resulted in time- 
-dependent intercepts (𝛼0(2)  −  𝛼0(15)) in the model. 

To evaluate the performance of the above models, CIF (see (3)) were estimated 
and compared. In Figure 2, the solid line represents the empirical cumulative inci-
dence function for defaults in the sample and the dotted lines represent theoretical 
CIFs for estimated models. The Cox PH model best mimics jumps in, and the level 
of cumulative incidences for, all time points. Only the vertical model predicts the 
presence of events after time=1 rather than time=3. The whole theoretical CIF curve 
for this model lies above the empirical curve. The mixture model gives overestimated 
values of CIF for most time points. 

 

Fig. 2. Empirical and theoretical cumulative incidence functions for default  
in the sample of 5,000 credits 

Source: own study. 
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Fig. 3. Empirical and theoretical (by model) distributions of defaults through the months of credit life  

Source: own study. 

The differences between the actual and theoretical number of defaults in con-
secutive months of credit life are shown in Figure 3. For months 3 through 5, the Cox 
PH model underestimates the real number of defaults while in later months it overes-
timates. However, in comparison with the other models, the Cox PH model gives the 
best estimation of defaults at most of the time points. 

Table 4. Time-dependent AUC (and (MSE)1/2 in the last row) for competing estimated risks models 

Month Cox PH 
(95% CI) 

Fine and Gray 
(95%CI) 

Mixture 
(95%CI) 

Vertical 
(95%CI) 

GEE 
(95%CI) 

4 0.748 
(0.700-0.801) 

0.664 
(0.607-0.736) 

0.599 
(0.552-0.680) 

0.819 
(0.749-0.879) 

0.767 
(0.704-0.821) 

5 0.785 
(0.750-0.821) 

0.709 
(0.669-0.756) 

0.610 
(0.577-0.714) 

0.829 
(0.778-0.878) 

0.792 
(0.751-0.832) 

6 0.779 
(0.750-0.813) 

0.707 
(0.671-0.750) 

0.601 
(0.571-0.725) 

0.798 
(0.749-0.848) 

0.782 
(0.746-0.816) 

7 0.768 
(0.742-0.801) 

0.696 
(0.667-0.735) 

0.609 
(0.574-0.72) 

0.764 
(0.712-0.821) 

0.77 
(0.738-0.803) 

8 0.771 
(0.747-0.803) 

0.692 
(0.665-0.730) 

0.624 
(0.591-0.708) 

0.749 
(0.696-0.808) 

0.774 
(0.743-0.803) 

9 0.762 
(0.739-0.796) 

0.682 
(0.654-0.719) 

0.615 
(0.581-0.699) 

0.721 
(0.667-0.785) 

0.764 
(0.73-0.791) 

10 0.757 
(0.734-0.79) 

0.672 
(0.648-0.711) 

0.602 
(0.567-0.689) 

0.692 
(0.634-0.765) 

0.753 
(0.72-0.784) 

11 0.751 
(0.727-0.787) 

0.670 
(0.649-0.708) 

0.587 
(0.551-0.678) 

0.664 
(0.594-0.745) 

0.744 
(0.709-0.777) 

12 0.724 
(0.695-0.766) 

0.671 
(0.65-0.707) 

0.579 
(0.544-0.666) 

0.627 
(0.54-0.73) 

0.719 
(0.684-0.759) 

13 0.72 
(0.683-0.774) 

0.674 
(0.653-0.710) 

0.578 
(0.547-0.687) 

0.611 
(0.498-0.733) 

0.712 
(0.667-0.766) 

14 0.774 
(0.706-0.844) 

0.678 
(0.657-0.711) 

0.634 
(0.55-0.752) 

0.644 
(0.428-0.838) 

0.761 
(0.681-0.835) 

(MSE)1/2 4.48 10.10 59.23 12.67 13.14 

Source: own study. 
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The values of the √𝑀𝑀𝑀 measure (44) for all the models are given at the bottom 
of Table 4. The lowest error (4.48 defaults per month) was generated by the Cox PH 
model, which confirms the observation from Figure 3 that the Cox PH model gives 
estimates closest to the real distribution of defaults. 

To measure the applicability of the CIF as a score function, time-dependent ROC 
curves and the area above them, AUC(t) were calculated for months 4 to 14. Due to 
the construction of the estimators of the AUC(t), estimates of AUC(t) for months 3 
and 15 could not be calculated. The results are presented in Table 4; confidence in-
tervals were estimated as percentiles 2.5 and 97.5 from 1000 bootstraps. 

The CIFs created by the models give satisfactory results, with all AUCs signifi-
cantly greater than 0.5. For months 4 to 6, the vertical model gives the best predictive 
accuracy of the compared models, whereas during the subsequent months it gives 
one of the worst. It is also worth noting that, even though the CIFs for the whole 
sample are very close (c.f. Figure 2), as given by the model for pseudo-observations 
(GEE model) and by the Fine-Gray model, the AUC(t) are higher for the first model 
for all 𝑡. 

8. Discussion 

In this paper, the application of competing risks regression models was proposed to 
evaluate the probability of default over time. The empirical study showed that com-
peting risks models can be effectively used in credit risk assessment, but the results 
of the study do not prejudge which of the models would be the most efficient scoring 
tool. 

The differences in the model prerequisites result in different choices of sets of 
covariates. The advantage of the pseudo-observations approach is that, in contrast 
with other models, it does not require the assumption of proportionality to be met, 
which allows the inclusion of variables which are excluded from other types of mod-
el. The predictive accuracy of this model, measured by 𝐴𝐴𝐴(𝑡), was also one of the 
highest. However, the weakness of this model is that it overestimated the CIF at all 
time points. 

The CIF calculated on the basis of the Cox PH models for default and for early 
repayment best resembled the distribution of defaults over time. A worthwhile fea-
ture of this model is the option to use different sets of covariates in survival functions 
for time to default and time to early repayment. 

Despite these positive results, one should keep in mind that this model requires 
an unverifiable assumption of independence of default and early repayment. Borrow-
ers who decide to repay credit before the predefined end date are often those who 
have their own assets for repayment and prefer not to pay interest to the bank. How-
ever, the decision to repay early could also be part of a refinancing process; borrow-
ers who are in a bad financial condition and are unable to make instalment payments 
could take additional credit, for a longer period of time and with lower instalment 
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payments, to pay back the first credit. This would allow avoidance, or at least post-
ponement, of default. 

Some banks, especially those offering services to creditors excluded from the 
broader financial market, may have such customers. A bank is not usually informed 
of the reason for early repayment, and heterogeneity in the group of borrowers who 
repay credit early could influence the estimation and performance of models for 
probability of default. It would therefore be valuable to compare the performance of 
models for competing risks in different portfolios of retail credit. 
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ZASTOSOWANIE MODELI ZDARZEŃ KONKURUJĄCYCH  
DO OCENY RYZYKA KREDYTOWEGO  
 
Streszczenie: Jednym z podstawowych zadań instytucji kredytowych jest ocena ryzyka kredytowego, 
którego podstawowym elementem jest ocena niewypłacalności kredytobiorcy. Wielkość portfela 
kredytowego może zmniejszać się w czasie z powodu nie tylko wystąpienia niewypłacalności, ale 
również wcześniejszych spłat kredytów. Zmienia to prawdopodobieństwo niewypłacalności  
w kolejnych okresach. Szacując prawdopodobieństwo niewypłacalności, należy więc uwzględnić 
prawdopodobieństwo wcześniejszych spłat w kolejnych okresach, co można osiągnąć za pomocą 
modeli zdarzeń konkurujących. W badaniu do oceny ryzyka niewypłacalności zaproponowano 
wybrane modele regresji dla zdarzeń konkurujących. Rozważane są modele: hazardu według 
przyczyny, hazardu subrozkładu, mieszanki modeli (podejście horyzontalne i wertykalne) oraz 
modele uogólnionych równań estymacyjnych GEE dla pseudoobserwacji. Badanie empiryczne 
przeprowadzono na próbie portfela kredytów udzielonych przez jedną z instytucji finansowych  
w Polsce. 
 
Słowa kluczowe: model Coxa, model Fine’a-Graya, pseudoobserwacje,  modele mieszane, modele 
wertykalne. 
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