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Abstract: Latent class analysis has been widely used in the measurement models. Models based on 
latent variables have a wide range of applications in the presence of repeated ob-servations, longitudinal 
data, and multilevel data. In this paper we present and apply log-linear analysis as a method for the 
analysis of multi-way tables. We also present a latent variable model based on a variable that is not 
directly observed. The basic model postulates an underlying categorical latent variable; within any 
category of the latent variable the manifest or observed categorical variables are assumed independent 
of one another (axiom of conditional independence). In this paper we present the results of a survey 
research based on categorical data and the author`s questionnaire. We present the results of the latent 
class analysis in the classification of respondents into clusters characterized by similar attitudes and 
features in economic research. We also conduct a prior log-linear analysis for a multi-way contingency 
table. All the calculations are conducted in R.
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1.	Introduction and historical background

The measurement of human properties has been a long-lasting quest that originated 
in the 19th century and successively continued to this very day. Significant inroads to 
the development of the interest in the area of measurement may be traced back to the 
beginning of the twentieth century. Binet and Simon [1905], were the first to develop 
and use what we would nowadays call a standardized intelligence test, and in the 
same era Charles Spearman [1904] developed the concepts and methodology of what 
would later be called classical test theory (CTT) and factor analysis (FA). Although 
CTT was the dominant statistical test model in the first half of the 20th century 
[Guilford 1936; Gulliksen 1950], other developments were also taking place. In 
England, Walker [1931] set the stage for what later was to become known as Guttman 
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(1944, 1950) scaling, by introducing the idea that if a respondent can answer a harder 
question correctly then he or she should be able to answer easier questions on the 
same topic correctly as well. Walker also introduced the idea of a quantitative index 
measuring deviation from this deterministic model in real data [Loevinger 1948]. 
This was a deterministic approach without a random error component to the analysis 
of data collected by a set of items that are assumed to measure one psychological 
property in common. A little earlier, in the 1920s, Thurstone [1927] developed his 
statistical measurement method of comparative judgment. Thurstone’s work may 
be viewed as the most important probabilistic predecessor of item response theory 
(IRT). 

In the 1970s, item response theory became the dominant topic for study by 
measurement specialists, but the genesis of item response theory (IRT) can be traced 
back to the mid-thirties and early forties. In fact, the term Item Char-acteristic Curve 
(ICC), which is one of the main IRT concepts, can be attributed to Ledyard Tucker 
in 1946. Despite these early research efforts, interest in item re-sponse theory lay 
dormant until the late 1960s and took a backseat to the emerging development of 
strong true score theory. While true score theory developed rapidly and drew the 
attention of leading psychometricians, the problems and weaknesses inherent in its 
formulation began to raise concerns. Such problems as the lack of invariance of item 
parameters across examinee groups, and the inadequacy of clas-sical test procedures 
to detect item bias or to provide a sound basis for measure-ment in “tailored 
testing”, gave rise to a resurgence of interest in item response theory. Impetus for the 
development of item response theory as we now know it was provided by Frederic 
M. Lord through his pioneering works [Lord 1952, 1953]. The progress in the fifties 
was painstakingly slow due to the math-ematical complexity of the topic and the 
nonexistence of computer programs. In-terest in Lord’s work spread quickly, as 
evidenced in the increase in publications in this area. Allen Birnbaum wrote a series 
of technical reports on logistic test models and model parameter estimation in 1957 
and 1958. George Rasch [1960] published his book proposing several models for 
item responses.

2.	Analysis of cross-classified tables 

Log-linear models are a standard tool to analyze structures of dependency in multi-
way contingency tables. The criteria to be analyzed are the expected cell frequencies 
as a function of all the variables in the survey. There are several types of log-linear 
models depending on the number of variables and interactions included. A satu-
rated model for a three-way KJH ××  ( 1, ..., , 1, ..., , 1, ...,h H j J k K= = = ) table 
including all the possible effects in multiplicative form for three variables is given 
as [Christensen 1997]: 
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where: mhjk – expected cell counts for the contingency table. 
By taking the natural logarithms we have an additive equation given as:
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where: λ  represents an overall effect or a constant, X
hλ , Y

jλ , Z
kλ  represents the effect 

of the row, column and layer variable X, Y, Z, XY
hjλ , XZ

hkλ , YZ
jkλ  represents the 

interaction between two variables XY, XZ, YZ and XYZ
hjkλ   is an interaction term 

between XYZ.

A saturated model reproduces perfectly the observed cell frequencies through 
the theoretical frequencies and such a model is meaningless since the aim is to find a 
more parsimonious model with less parameters. In order to find the best model from 
a set of possible models, some additional measures have to be considered. A rule of 
thumb to determine the degrees of freedom df is number of cells – number of free 
parameters [Agresti 2002]. The starting point is the saturated model. Thus the aim of 
the researcher is to find a reduced model. A reduced model is a more parsimonious 
model with fewer parameters and thus fewer dependencies and effects. The hierarchy 
principle reveals that a parameter of a lower order cannot be removed when there is 
still a parameter of higher order that concerns at least one of the same variable. 

A unique set of ML estimates for every cell can be derived from the sufficient 
statistics alone with the use of iterative proportional fitting [Deming, Stephan 1940]. 
The main goal of log-linear analysis is to find the smallest model that fits the data. 
The overall goodness-of-fit of a model is assessed by comparing the expected 
frequencies to the observed cell frequencies for each model. The goodness of fit of a 
log-linear model is usually tested using either the Pearson chi-square test statistic or 
the likelihood ratio statistic:
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where: nhjk – observed cell counts for a three-way table. 

Therefore, larger G2 values indicate that the model does not fit the data well 
and thus the model should be rejected. This strategy is the opposite of the usual 
chi-square test of independence, where we seek to reject the null hypothesis of no 
association. Yet in trying to find the best fitting log-linear model to describe the 
cross-table we hope to accept the hypothesized model, hence we want to find a low  
G2 value relative to df [Knoke, Burke 1980]. The likelihood ratio can also be used 
to compare an overall model within a smaller, nested model (i.e. a saturated model 
with one interaction or main effect dropped to assess the importance of that term). 
The equation is 2 2 2

2 1G G G∆ = −  with: 2 1df df df∆ = − , where 2 is the nested model, 
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1 is the higher parameterized model, and are degrees of freedom for model 1 and 
model 2. If the comparison statistic is not significant, then the nested model is not 
significantly worse than the saturated model.

In order to find the best model from a set of possible models, additional meas-
urements should be considered. The Akaike information criterion [Akaike 1973] 
refers to the information contained in a statistical model according to equation:

	 2 2AIC G df= − .	 (4)

Another information measurement is the Bayesian information criterion [Raftery 
1986]: 

	 2 lnBIC G df n= − ⋅ ,	 (5)

where: n – total sample size. The model that minimizes AIC and BIC will be chosen. 

3.	Latent class analysis

When a researcher wishes to obtain a better understanding of the relationship 
between two observed dichotomous variables (e.g. variables A and B) it is advisable 
to consider another variable (dichotomous or polytomous, let us say, variable  X) 
that can explain this relationship. We say that variable X explains the relationship 
between variables A and B if this relationship disappears when the level of variable 
X is held constant. 

The methodology and basic notions of latent class analysis were developed by 
Paul Lazarsfeld during the early 1950s [Lazarsfeld 1950a; 1950b; Lazarsfeld and 
Henry 1968]. The credit for feasible and flexible algorithms for testing the validity 
of a wide variety of latent class models and estimating their parameters is due to 
Goodman [1974a; 1974b] and Haberman [1979]. An introduction into these more 
recent developments are provided by Clogg [1981], Formann [1985], Hagenaars 
[1990] and McCutcheon [1987]. 

A standard latent class analysis examines the cross-classification of several 
observed categorical variables with one or more latent categorical variable(s). There 
are two kinds of variables in latent class models. First, there are the directly observed 
manifest variables. These act as an indicator for the second kind, which are not 
directly observed latent variables. In the standard latent class model, both manifest 
and latent variables are treated as categorical nominal-level variables. Furthermore, 
it is assumed that the scores on the manifest variables do not influence each other 
directly and that the outside influence and measurement errors affecting the score 
on a particular manifest item are independent of the outside influence affecting 
other manifest items. All the items have in common is their being an indicator of 
the same latent variable. The manifest variables are correlated with each other, but 
this correlation disappears when the latent variable is held constant. This is the 
assumption of local independence (axiom of local independence), an assumption 
fundamental to all latent structure models.
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Let `
1 2, ,..., px x x =  x  represent the manifest variables, and [ ]`

1 2, ,..., my y y=y  
the latent variables. The number of latent variables, m, is usually much less than the 
number of manifest variables, p, since a latent variable model can be considered 
in some sense a data reduction method which reduces the full set of manifest 
observations to a few latent values. In essence all latent variable models assume that 

1 2, ,..., px x x  have a joint probability distribution conditional on 1 2, ,..., my y y ; this we 
shall denote by ( ).ϕ x y  If the manifest variables are all continuous, ϕ is a density 
function, but if they are discrete it is a set of probabilities. If the density function of  
y is h(y) then the unconditional density of x is defined as: 

	 ( )∫= yyyx dhxf )()( f . .	 (6)

In general terms it is the density functions, ϕ and h, that we would like to infer 
from the known or assumed density of x, in order to discover how the manifest 
variables depend upon the latent ones. However, it is clearly impossible to infer ϕ 
and h uniquely from f unless some assumptions are made about their form.

The crucial assumption of latent variable models is that of conditional 
independence, which states that given the values of the latent variables, the manifest 
variables are independent of one another. This can be expressed as follows:

	 ( ) ( ) ( ) ( )yyyyx pxxx φφφφ ...21= . 	 (7)

The assumption of conditional independence implies that it is the latent variables 
which produce the observed relationships amongst the manifest variables. The 
observed interdependence amongst the manifest variables is due to their common 
dependence on the latent variables and that once these have been determined, the 
behavior of the manifest variables is essentially random. 

In latent class analysis the latent structure is usually unknown and it is the 
analystʼs goal to estimate the parameters of the latent class model of interest. There 
are usually several competing models of interest that must be compared in terms of 
whether or not the given model fits the observed data within acceptable limits.

In this paper we present the most popular and known methods that can be used 
in this step of latent class analysis. Based on a total of n observations, the expected 
frequency for the s-th response vector is defined as: 

	 )(ˆˆ ss Pnn y⋅= , 	 (8)

where ˆsn  is the corresponding observed frequency for the response vector.

The goodness of fit of a given latent class model to the observed data can be 
assessed using a chi-square test based on observed and expected frequencies. We can 
use Pearson’s chi-square statistic based on the differences between the observed and 
the expected frequencies:
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Another well known measurement for testing goodness-of-fit for latent class 
model is the likelihood-ratio statistic:
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Another group of criteria used for model selection are information criteria. The 
Akaike information criterion (AIC) [Akaike 1973] defined as: 

	 ( ) ( )[ ]∑
=
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s
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where: ( )h sP Y  is the probability for an observed response vector based on maximum-
likelihood estimates for the h-th model. Another Akaike information criterion is 
defined as:

	 ( )2log 2h e h hAIC L m= − + , 	 (12)

where mh is the number of independent parameters that are estimated when fitting the 
h-th model to the data. An alternative, simpler approach is based on the likelihood-
ratio chi-square statistics. For H different latent class models fitted to the same data, 
let G2 be the chi-square value, and hv  be corresponding degrees of freedom. An 
alternative Akaike information criterion for the h-th model is:

	 hhh vGAIC 22* −= . 	 (13)

AICh and *
hAIC  differ only by a constant amount that involved the sample size n, and 

the number of observed response vectors ( v2 ). 

For model selection we can also apply the Bayesian information criterion (BIC) 
[Schwartz 1978]:

	 ( ) ( ) heheh mNLBIC ⋅+−= loglog2 , 	 (14)

or the modification BIC: 

	 ( ) hehh mNGBIC ⋅−= log2* . 	 (15)

The minimum value of information criterion will be chosen indicating the model 
that fits best.
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4.	Application and item analysis in R

In this paper we apply item analysis for the preferences and attitude measurement 
based on the author`s own survey study. All the calculations presented in this paper are 
conducted in R, which can be downloaded from www.r-project.org. R Development 
Core Team has become a successful language for statistical computing and graphics. 
Today, it is often considered as the lingua franca of all computational statistical 
tools. This means it can be used, distributed, copied and shared without restrictions. 
It enables and encourages learning, collaboration, adaptation and inspection of the 
code base and allows reproducible statistical analyses. This software is widely used 
in the academic environment providing full statistical analysis. 

Our own survey in 2018, was conducted using a questionnaire based on 26 
questions on nominal scale (answers: Yes or No). There were 242 respondents who 
were students at the University of Economics in Katowice. 74.38% of respondents 
were female, and 25.62% were male at average age 21-24 (91.90%). 

The correlation coefficients between all the possible pairs of questions were 
computed, and the questions with the highest correlation values were chosen for the 
analysis: 
•	 do you want to be successful in life (X19) and is the quality of your future life 

important for you (X21) with r = 0.628,
•	 do you want to study in future (X23) and do you want to improve your professional 

skills (X24) with r = 0.778.
These items were the main constructs in the measurement of attitudes towards 

ability in their professional future. 
Firstly, we apply log-linear analysis to select the categorical model presenting 

the relation between the categories of variables that are analyzed. For the building 
process we use symbols in bracket notation instead of variable names. We use [G] 
for gender, [S] for success in life, [Q] quality of life, [C] for upgrading competences 
and future studies. We build models using the hierarchy principle and we present 
the goodness of fit for models using (3), (4) and (5) coefficients with corresponding 
p-value and degrees of freedom (df). 

From the analysis of log-linear models we should choose a model that is not too 
complex, and at the same time has a satisfactory level of fit. The model that contains 
few variables and has sufficient information criteria is model [QSC] three-way having 
interactions. In this model we have also all lower-order pairs of interactions and single 
variables. This model is difficult in its interpretation, also the interpretation of estimates 
parameters of higher-order will be difficult. That is why it is always advisable to 
consider models easy to interprete and we conduct a latent class analysis. 

Now we conduct a latent class analysis. In the first stem we test the goodness- of-
fit for models with 2, 3 and 4 latent classes. We apply several coefficients for model 
selection and the corresponding log likelihood value. The results of the analysis are 
presented in Table 2. 
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Table 1. Log-linear models and goodness-of-fit coefficients for some models for a four-way table

Model df G2 p AIC BIC
[GQSC] 0 0 1 0 0
[GQC] [GQS] [QSC] 8 0 1 142.8203 234.3135
[GQC] [GQS] 16 0.6415 0.9999 128.4618 204.0432
[GQC] [QSC] 8 0 1 142.8203 234.3135
[GQC] 36 455.0089 0 541.8292 577.6309
[QSC] 27 100.1566 0.00011 204.9769 258.6795
[GQ] [GC] [QC] 40 4535.010 0 533.8306 561.6764
[GQ] [GC] 44 474.5241 0 533.8306 561.6764
[GQ] [QC] 40 455.0103 0 545.3444 565.2342
[GC] [QC] 40 455.0103 0 533.8306 561.6764
[GQ] [G] 44 474.5241 0 545.3444 565.2342

Source: own calculations in R.

Table 2. Log-linear models and goodness-of-fit coefficients	

Latent clases AIC BIC G2 χ2 df
2 644.9676 704.2796 57.2200 209.2463 63
3 638.8415 729.5539 33.0939 76.9919 54
4 656.0123 778.1251 32.2647 74.0101 45

Source: own calculations in R.

As latent class models with lower AIC and BIC values are preferred to those 
with higher values for this criteria, we consider a model with 3 latent classes as the 
latent class model fitting best. For this model also other criteria based on chi-square 
coefficient are the minimum. 

Now we present graphically the probability of 3 latent class membership. Figure 
1 presents the probability of 4 latent class membership and probabilities for variables 
that were examined in each latent class. 

Population share for class 1 is 0.05, for class 2 it is 0.888 and for class 3, 0.062. 
In Figure 1 each group of red bars represents the conditional probabilities, by latent 
class, of being rated by respondents of the three answers: 1: Yes, 2: No. 3: ‘I don`t 
know’, with taller bars corresponding to the conditional probabilities closer to 1 of 
a positive rating. 

We can see that in class 1 the highest bars can be seen for X19 and X21 were 
obtained mostly for answer 1: ‘Yes’, whereas for X23 and X24 were obtained for 
answer 2: ‘No’. Total class population share for class 1 is 0.05. This means that in 
class 1 there are respondents who want to be successful in life and for whom the 
future is important, but they are not interested in future studies nor in improving their 
competences in the future. 
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Fig. 1. Probability of 3 latent classes

Source: own calculations. 

In class 2 we can see that most of respondents answered mostly ‘Yes’ to all of the 
questions. This refers to the high red bars for all four variables: X19, X21, X23 and X24. 
This means that this group is future and success oriented. The total class population 
share for class 2 is 0.888. 

In class 3 we observe most of respondents answered Yes for questions X19 and 
X21, whereas the ‘don`t know’ answer was for X23 and X24. This group is strongly 
oriented towards success and future but doesn not know about their preferences 
about upgrading competences and future studies. 

5.	Conclusions 

In this paper we presented the results from the author`s study on the attitude towards 
ability in their professional future among young Polish students. From the primary 
set of variables only a few were chosen for the analysis. Log-linear analysis and 
latent class analysis were applied. As log-linear models are difficult to interpret when 
they include several variables, we apply latent class analysis for further studies. 
Several latent models were tested to check the goodness of fit using information 
criteria (AIC, BIC) and measurements based on the chi-square coefficient ( 2χ , G2). 
The 4 latent class model was chosen and presented using conditional probabilities 
for each latent class, as well as providing a graphical presentation of membership 
to latent classes. From the analysis, three latent classes were separated with latent 



64	 Justyna Brzezińska

class membership probability. The first class were a group of respondents who are 
interested in the future and success but not in their studies and further upgrading 
their competences. The second group with the highest probability membership are 
people strongly oriented in upgrading their competences and further studies. 

The last group are respondents interested in achieving life success in future but 
not sure about future upgrading their professional competences. This study proved 
that item analysis is a powerful and useful tool in the analysis of preferences and 
attitudes in questionnaire research. R software provides poLCA package for the 
analysis of latent class which should encourage researchers to conduct their own 
studies using this software.
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ANALIZA KLAS UKRYTYCH W OCENIE POZYCJI TESTOWYCH 
W BADANIACH SONDAŻOWYCH

Streszczenie: Modele oparte na zmiennych ukrytych znajdują szerokie zastosowanie w przypadku 
powtarzających się obserwacji, danych panelowych czy też modeli wielopoziomowych. Jako pierwszą 
zastosowano analizę log-liniową, która jest trudna do interpretacji w przypadku modeli z wieloma 
zmiennymi. W kolejnej części pracy zastosowano analizę klas ukrytych, która zawiera zmienne ukryte. 
Analiza klas ukrytych oparta jest na dwóch założeniach. Pierwsze mówi o tym, że populacja składa się 
z rozłącznych (mutually exclusive) i spójnych (exhaustive) jednorodnych podpopulacji, które łącznie 
tworzą klasę ukrytą; drugie natomiast nazywane jest warunkiem lub aksjomatem lokalnej niezależno-
ści (local independence assumption), zgodnie z którym związek między zmiennymi obserwowalnymi 
zależy od relacji pomiędzy zmiennymi obserwowalnymi a zmiennymi ukrytymi. W artykule zaprezen-
towano autorskie wyniki badań nt. postaw studentów stojących u progu kariery zawodowej. Ponadto 
przedstawiono zarówno teoretyczne, jak i praktyczne aspekty analizy klas ukrytych. 

Słowa kluczowe: analiza klas ukrytych, analiza logarytmiczno-liniowa, pozycje testowe, badania son-
dażowe. 


