Star Coloring Outerplanar Bipartite Graphs

Open access


A proper coloring of the vertices of a graph is called a star coloring if at least three colors are used on every 4-vertex path. We show that all outerplanar bipartite graphs can be star colored using only five colors and construct the smallest known example that requires five colors.

[1] M.O. Albertson, G.C. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P4’s, Electron. J. Combin. 11 (2004) #R26.

[2] O. V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211–236. doi:10.1016/0012-365X(79)90077-3

[3] M. Chen, A. Raspaud and W. Wang, 6-star-coloring of subcubic graphs, J. Graph Theory 72 (2013) 128–145. doi:10.1002/jgt.21636

[4] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163–182. doi:10.1002/jgt.20029

[5] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390–408. doi:10.1007/BF02764716

[6] H.A. Kierstead, A. Kündgen and C. Timmons, Star coloring bipartite planar graphs, J. Graph Theory 60 (2009) 1–10. doi:10.1002/jgt.20342

[7] J. Nešetřil and P. Ossona de Mendez, Colorings and homomorphisms of minor closed classes, in: B. Aronov, S. Basu, J. Pach and M. Sharir (Eds.), Discrete and Computational Geometry: The Goodman-Pollack Festschrift (Springer-Verlag, Berlin, 2003) 651–664. doi:10.1007/978-3-642-55566-4

[8] G. Sanders, Star Coloring of Outerplanar Bipartite Graphs, M.Sc. Thesis (California State University San Marcos, 2005).

[9] C. Timmons, Star Coloring Planar Graphs, M.Sc. Thesis (California State University San Marcos, 2007).

[10] D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, 2001).

Discussiones Mathematicae Graph Theory

The Journal of University of Zielona Góra

Journal Information

IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target Group

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 28
PDF Downloads 28 28 9