Generalized Sum List Colorings of Graphs

Open access


A (graph) property 𝒫 is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties 𝒫.

If to each vertex v of a graph G a list L(v) of colors is assigned, then in an (L, 𝒫)-coloring of G every vertex obtains a color from its list and the subgraphs of G induced by vertices of the same color are always in 𝒫. The 𝒫-sum choice number Xsc𝒫(G) of G is the minimum of the sum of all list sizes such that, for any assignment L of lists of colors with the given sizes, there is always an (L, 𝒫)-coloring of G.

We state some basic results on monotonicity, give upper bounds on the 𝒫-sum choice number of arbitrary graphs for several properties, and determine the 𝒫-sum choice number of specific classes of graphs, namely, of all complete graphs, stars, paths, cycles, and all graphs of order at most 4.

[1] A. Berliner, U. Bostelmann, R.A. Brualdi and L. Deaett, Sum list coloring graphs, Graphs Combin. 22 (2006) 173–183. doi:10.1007/s00373-005-0645-9

[2] C. Brause, A. Kemnitz, M. Marangio, A. Pruchnewski and M. Voigt, Sum choice number of generalized θ-graphs, Discrete Math. 340 (2017) 2633–2640. doi:10.1016/j.disc.2016.11.028

[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5–50. doi:10.7151/dmgt.1037

[4] E. Drgas-Burchardt and A. Drzystek, General and acyclic sum-list-colouring of graphs, Appl. Anal. Discrete Math. 10 (2016) 479–500. doi:10.2298/AADM161011026D

[5] E. Drgas-Burchardt and A. Drzystek, Acyclic sum-list-colouring of grids and other classes of graphs, Opuscula Math. 37 (2017) 535–556. doi:10.7494/OpMath.2017.37.4.535

[6] J. Harant and A. Kemnitz, Lower bounds on the sum choice number of a graph, Electron. Notes Discrete Math. 53 (2016) 421–431. doi:10.1016/j.endm.2016.05.036

[7] G. Isaak, Sum list coloring 2 × n arrays, Electron. J. Combin. 9 (2002) #N8.

[8] G. Isaak, Sum list coloring block graphs, Graphs Combin. 20 (2004) 499–506. doi:10.1007/s00373-004-0564-1

[9] A. Kemnitz, M. Marangio and M. Voigt, Bounds for the sum choice number, Electron. Notes Discrete Math. 63 (2017) 49–58. doi:10.1016/j.endm.2017.10.061

[10] A. Kemnitz, M. Marangio and M. Voigt, On the 𝒫-sum choice number of graphs for 1-additive properties, Congr. Numer. 229 (2017) 117–124.

[11] M.A. Lastrina, List-Coloring and Sum-List-Coloring Problems on Graphs, Ph.D. Thesis (Iowa State University, 2012).

Discussiones Mathematicae Graph Theory

The Journal of University of Zielona Góra

Journal Information

IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target Group

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 35
PDF Downloads 45 45 16