Arankings of Trees

Open access


For a graph G = (V, E), a function f : V (G) → {1, 2, . . ., k} is a kranking for G if f(u) = f(v) implies that every uv path contains a vertex w such that f(w) > f(u). A minimal k-ranking, f, of a graph, G, is a k-ranking with the property that decreasing the label of any vertex results in the ranking property being violated. The rank number χr(G) and the arank number ψr(G) are, respectively, the minimum and maximum value of k such that G has a minimal k-ranking. This paper establishes an upper bound for ψr of a tree and shows the bound is sharp for perfect k-ary trees.

[1] H. Alpert, Rank numbers of grid graphs, Discrete Math. 310 (2010) 3324–3333. doi:10.1016/j.disc.2010.07.022

[2] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson and T. Kloks, Approximating treewidth, pathwidth, frontsize, and shortest elimination tree, J. Algorithms 18 (1995) 238–255. doi:10.1006/jagm.1995.1009

[3] H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Muller and Zs. Tuza, Rankings of graphs, SIAM J. Discrete Math. 11 (1998) 168–181. doi:10.1137/S0895480195282550

[4] G. Chartrand and P. Zhang, A First Course in Graph Theory (Dover Books, New York, 2012).

[5] P. de la Torre, R. Greenlaw and A.A. Schaeffer, Optimal ranking of trees in polynomial time, in: Proc. 4th ACM Symp. on Discrete Algorithms, V. Ramachandran (Ed(s)), (Austin, Texas, Society for Industrial and Applied Mathematics, 1993) 138–144.

[6] J.S. Deogun, T. Kloks, D. Kratsch and H. Muller, On vertex ranking for permutation and other graphs, in: Lecture Notes in Comput. Sci. 775, P. Enjalbert, E.W. Mayr and K.W. Wagner (Ed(s)), (Berlin, Springer-Verlag, 1994) 747–758. doi:10.1007/3-540-57785-8_187

[7] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software 9 (1983) 302–325. doi:10.1145/356044.356047

[8] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 835–855. doi:10.2140/pjm.1965.15.835

[9] J. Ghoshal, R. Laskar and D. Pillone, Minimal rankings, Networks 28 (1996) 45–53. doi:10.1002/(SICI)1097-0037(199608)28:1⟨45::AID-NET6⟩3.0.CO;2-D

[10] J. Ghoshal, R. Laskar and D. Pillone, Further results on minimal rankings, Ars Combin. 52 (1999) 191–198.

[11] M. Katchalski, W. McCuaig and S. Seager, Ordered colourings, Discrete Math. 142 (1995) 141–154. doi:10.1016/0012-365X(93)E0216-Q

[12] R. Laskar, and D. Pillone, Extremal results in rankings, Congr. Numer. 149 (2001) 33–54.

[13] R. Laskar, D. Pillone, J. Jacob, G. Eyabi and D. Narayan, Minimal rankings of the Cartesian product KmKn, Discuss. Math. Graph Theory 32 (2012) 725–735. doi:10.7151/dmgt.1634

[14] R. Laskar and D. Pillone, Theoretical and complexity results for minimal rankings, J. Comb. Inf. Syst. Sci. 25 (2000) 17–33.

[15] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990) 134–172. doi:10.1137/0611010

[16] V. Kostyuk, D.A. Narayan and V.A. Williams, Minimal rankings and the arank number of a path, Discrete Math. 306 (2006) 1991–1996. doi:10.1016/j.disc.2006.01.027

Discussiones Mathematicae Graph Theory

The Journal of University of Zielona Góra

Journal Information

IMPACT FACTOR 2017: 0.601
5-year IMPACT FACTOR: 0.535

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target Group

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3645 3645 51
PDF Downloads 77 77 8