On Uniquely Hamiltonian Claw-Free and Triangle-Free Graphs

Open access


A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. In this note, we prove that claw-free graphs with minimum degree at least 3 are not uniquely Hamiltonian. We also show that this is best possible by exhibiting uniquely Hamiltonian claw-free graphs with minimum degree 2 and arbitrary maximum degree. Finally, we show that a construction due to Entringer and Swart can be modified to construct triangle-free uniquely Hamiltonian graphs with minimum degree 3.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Abbasi and A. Jamshed A degree constraint for uniquely Hamiltonian graphs Graphs Combin. 22 (2006) 433-442. doi:10.1007/s00373-006-0666-z

  • [2] H. Bielak Chromatic properties of Hamiltonian graphs Discrete Math. 307 (2007) 1245-1254. doi:10.1016/j.disc.2005.11.061

  • [3] J.A. Bondy and B. Jackson Vertices of small degree in uniquely Hamiltonian graphs J. Combin. Theory (B) 74 (1998) 265-275. doi:10.1006/jctb.1998.1845

  • [4] R.C. Entringer and H. Swart Spanning cycles of nearly cubic graphs J. Com- bin. Theory (B) 29 (1980) 303-309. doi:10.1016/0095-8956(80)90087-8

  • [5] H. Fleischner Uniquely Hamiltonian graphs of minimum degree 4 J. Graph Theory 75 (2014) 167-177. doi:10.1002/jgt.2172

  • [6] P. Haxell B. Seamone and J. Verstraete Independent dominating sets and Hamiltonian cycles J. Graph Theory 54 (2007) 233-244. doi:10.1002/jgt.20205

  • [7] J. Petersen Die theorie der regul¨aren graphs Acta Math. 15 (1891) 193-220. doi:10.1007/BF02392606

  • [8] J. Sheehan The multiplicity of Hamiltonian circuits in a graph in: Recent Advances in Graph Theory (Proc. Second Czechoslovak Sympos. Prague 1974) Fiedler (Ed(s)) (Prague: Academia 1975) 477-480.

  • [9] A.G. Thomason Hamiltonian cycles and uniquely edge colourable graphs Ann. Dis- crete Math. 3 (1978) 259-268. doi:10.1016/S0167-5060(08)70511-9

  • [10] C. Thomassen On the number of Hamiltonian cycles in bipartite graphs Com- bin. Probab. Comput. 5 (1996) 437-442. doi:10.1017/S0963548300002182

  • [11] C. Thomassen Independent dominating sets and a second Hamiltonian cycle in regular graphs J. Combin. Theory (B) 72 (1998) 104-109. doi10.1006/jctb.1997.1794

  • [12] W.T. Tutte On Hamiltonian circuits J. London Math. Soc. 21 (1946) 98-101. doi:10.1112/jlms/s1-21.2.98

Journal information
Impact Factor
IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target audience:

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 78 1
PDF Downloads 70 38 2