Ordered Regular Semigroups with Biggest Associates

Open access

Abstract

We investigate the class BA of ordered regular semigroups in which each element has a biggest associate x = max {y | xyx = x}. This class properly contains the class PO of principally ordered regular semigroups (in which there exists x = max {y | xyx x}) and is properly contained in the class BI of ordered regular semigroups in which each element has a biggest inverse x◦. We show that several basic properties of the unary operation x x in PO extend to corresponding properties of the unary operation x x in BA. We consider naturally ordered semigroups in BA and prove that those that are orthodox contain a biggest idempotent. We determine the structure of some such semigroups in terms of a principal left ideal and a principal right ideal. We also characterise the completely simple members of BA. Finally, we consider the naturally ordered semigroups in BA that do not have a biggest idempotent.

[1] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005). doi:10.1007/b139095

[2] T.S. Blyth, On the endomorphism semigroup of an ordered set, Glasgow Math. J. 37 (1995) 173–178. doi:10.1017/S0017089500031074

[3] T.S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinburgh 91A (1981) 107–122. doi:10.1017/S0308210500012671

[4] T.S. Blyth and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math. J. 32 (1990) 349–364. doi:10.1017/S0017089500009435

[5] T.S. Blyth and M.H. Almeida Santos, On weakly multiplicative inverse transversals, Proc. Edinburgh Math. Soc. 37 (1993) 91–99. doi:10.1017/s001309150001871x

[6] T.S. Blyth and M.H. Almeida Santos, On naturally ordered regular semigroups with biggest idempotents, Communications in Algebra 21 (1993) 1761–1771. doi:10.1080/00927879308824651

[7] T.S. Blyth and M.H. Almeida Santos, E-special ordered regular semigroups, Communications in Algebra 43 (2015) 3294–3313. doi:10.1080/00927872.2014.918987

[8] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples , Ann. Sci. École Norm. Sup. 70 (1953) 361–379. doi:10.24033/asens.1015

[9] P.A. Grillet, Semigroups (Marcel Dekker, New York, 1995). doi:10.1201/9780203739938

[10] R.D. Luce, A note on boolean matrix theory, Proc. Amer. Math. Soc. 3 (1952) 382–388. doi:10.2307/2031888

[11] D.B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups , J. Australian Math. Soc. 31 (1981) 325–336. doi:10.1017/S1446788700019467

[12] K.S.S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980) 249–260. doi:10.1017/S0013091500003801

[13] T. Saito, Naturally ordered regular semigroups with greatest inverses, Proc. Edinburgh Math. Soc. 32 (1989) 33–39. doi:10.1017/S001309150000688x

Journal Information


Mathematical Citation Quotient (MCQ) 2017: 0.08

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 21
PDF Downloads 43 43 9