Г-Field

Open access

Abstract

In this paper, we introduce the notion of a Г-field as a generalization of field, study them properties of a Г -field and prove that M is a Г-field if and only if M is an integral, simple and commutative Г-ring.

[1] T.K. Dutta and S. Kar, On regular ternary semirings, in: K.P. Shum, Z.H. Wan and J.P. Zhang (Eds.), Advances in Algebra, Proceedings of the ICMSatellite Conference in Algebra and Related Topics (Singapore, World Scientific, 2003) 343–355.

[2] T.K. Dutta and N.C. Adhikari, On Г-semigroup with the right and left unities, Soochow J. Math. 19 (1993) 461–474.

[3] D.H. Lehmer, A ternary analogue of Abelian groups Am. J. Math. 59 (1932) 329–338.

[4] W.G. Lister, Ternary rings, Tran. of American Math. Society 154 (1971) 37–55.

[5] M. Murali Krishna Rao, Г-semirings I, Southeast Asian Bull. Math. 19 (1995) 49–54.

[6] M. Murali Krishna Rao, Г-semirings II, Southeast Asian Bull. Math. 21 (1997) 281–287.

[7] M. Murali Krishna Rao, The Jacobson radical of Г-semiring, Southeast Asian Bull. Math. 23 (1999) 127–134.

[8] M. Murali Krishna Rao, Г-semiring with identity, Discuss. Math. General Algebra and Appl. 37 (2017) 189–207. doi:10.7151/dmgaa.1276

[9] M. Murali Krishna Rao, A generalization of a group, Communicated.

[10] M. Murali Krishna Rao, Ideals in ordered Г-semirings, Discuss. Math. General Algebra and Appl. 38 (2018) 47–68. doi:10.7151/dmgaa.1284

[11] M. Murali Krishna Rao, Bi-interior ideals in semigroups, Discuss. Math. General Algebra and Appl. 38 (2018) 69–78. doi:10.7151/dmgaa.1284

[12] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53. doi:10.7251/BIMVI1801045R

[13] M. Murali Krishna Rao, Bi-quasi-ideals and fuzzy bi-quasi-ideals of Г-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231–242. doi:10.7251/BIMVI1801045R

[14] M. Murali Krishna Rao, A study of Г-semiring M as a soft semiring (F,Г) over M, Bull. Int. Math. Virtual Inst. 8 (2018) 533–541. doi:10.7251/BIMVI1803533R

[15] J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. USA 22 (1936) 707–713.

[16] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81–89.

[17] M.K. Sen and N.K. Saha, On Г-semigroup I, Bull. Cal. Math. Soc. 78 (1986) 180–186.

[18] M.K. Sen, On Г-semigroup, Proc. of International Conference of Algebra and Its Application (Decker Publicaiton, New York, 1981) 301–308.

[19] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920.

Journal Information


Mathematical Citation Quotient (MCQ) 2017: 0.08

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 24
PDF Downloads 20 20 16