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Abstract
Turing patterns are a class of minimal mathematical models that have 
been used to discover and conceptualize certain abstract features of ear-
ly biological development. This paper examines a range of these mini-
mal models in order to articulate and elaborate a philosophical analysis 
of their epistemic uses. It is argued that minimal mathematical models 
aid in structuring the epistemic practices of biology by providing precise 
descriptions of the quantitative relations between various features of the 
complex systems, generating novel predictions that can be compared 
with experimental data, promoting theory exploration, and acting as 
constitutive parts of empirically adequate explanations of naturally oc-
curring phenomena, such as biological pattern formation. Focusing on 
the roles that minimal model explanations play in science motivates the 
adoption of a broader diachronic view of scientific explanation.
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1 Introduction

The epistemology of mathematical modeling in the biological sci-
ences generates difficult questions for both practicing scientists and 
philosophers. Mathematical models are typically assigned one or 
more of the following functions in biological research: unification, 
model fitting, mechanism identification, and prediction (Winther 2012, 
Brigandt 2013). Less agreement exists over whether mathematical 
models play a leading role in biological explanation and how that 
role should be understood (Fox Keller 2003). Philosophical analy-
ses themselves diverge as to whether we should understand math-
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ematical models as intermediary stages towards causal explanations 
or whether we should make room for distinctively mathematical ex-
planations of empirical phenomena (e.g. Baker 2005, 2009; Pincock 
2007, 2011, 2012, 2015; Lange 2013). This divide is also reflected in 
the normative judgments made by scientists working within different 
methodological traditions (cf. Fox Keller 2003; Amundson 2005).

How we answer the question about the explanatory roles of math-
ematical models in biological research will vary depending on the 
class of models chosen and on their intended applications in specific 
research contexts. I do not aim to offer a blanket thesis about math-
ematical explanation or model explanation across the life sciences. 
Instead, I focus on a particular type of minimal mathematical model-
ling, aiming to identify its distinctive features and its role in a special 
class of explanations in developmental biology, viz. morphological 
explanations (Nathan 2012). If this analysis is on the right track, it 
illustrates the virtues of adopting a diachronic and functionalist per-
spective on the general problem of model-based explanation.

The example that will help motivate and pin down some of the 
features of my thesis about the link between mathematical modeling 
and explanation is Turing’s reaction-diffusion model of the chemi-
cal basis of morphogenesis (Turing 1952). The central idea of the 
model is that biological patterning is a self-organizing phenomenon 
in which the interaction of two stabilizing processes gives rise to 
instabilities that in turn produce the spatial patterns observed in the 
course of development. In its simplest form, the model is expressed 
as a set of coupled reaction-diffusion equations which describe the 
ways in which cells differentiate in a concentration-dependent man-
ner in response to a chemical pre-pattern.

Turing’s work on pattern formation has triggered new research 
programs in both mathematics and biology. In the mathematical do-
main, the focus fell on exploring the rich variety of behaviours of the 
system of nonlinear parabolic equations, while theoretical and exper-
imental work in biology targeted the discovery and detailed analysis 
of the structure and function of morphogens. The following discussion 
examines a range of studies where Turing reaction-diffusion (RD) 
models have played a critical role. The aim is to develop novel phil-
osophical ideas about the epistemology of mathematical modelling 
which will complement and extend current philosophical analyses 
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of biological research practices (e.g. Fox Keller 2003, Bechtel and 
Richardson 2010).

There are two parts of my use of Turing’s pioneering work in 
mathematical biology (cf. Fox Keller 2003, Murray 2003, Bourgine 
and Lesne 2006, Maini 2012). For the first part, I emphasize two 
distinctive epistemological features of Turing’s original modeling 
technique: (1) the target of Turing’s mathematical model is described 
in broadly fictional terms; otherwise put, the features represented 
in the mathematical model are fictional or imaginary constructions 
based on a series of simplifying and idealizing assumptions (Levy 
2015). (2) Turing’s use of the model illustrates clearly the inferential 
link between the use of rigorous mathematical techniques for stabil-
ity analysis and the discovery or postulation of the causal processes 
responsible for observable features or phenomena. Focusing on these 
features will help make explicit the structure of the biological expla-
nations based on this modelling technique and to discuss their causal 
status. The second part of my analysis relies on a brief overview of 
the recent applications of Turing models in different areas of devel-
opmental biology in order to show how a diachronic and functional-
ist perspective can account for the extension and transformation of 
reaction-diffusion based explanations in developmental biology.

I start with a brief and informal discussion of Turing’s mathemati-
cal modelling and of the types of questions it opens up for investi-
gation. A selective survey of the current extensions and biological 
applications of Turing-models will provide a launchpad for a more 
abstract analysis of the interplay between mathematical modeling, 
biological theorizing, and experimentation. I argue that in this kind 
of setup it is possible to identify and articulate the explanatory con-
tributions of this class of mathematical models to understanding the 
origin, stability and robustness of biological patterns.

2 Turing patterns

Turing patterns are spatial or spatio-temporal organizational fea-
tures observed in the physical and biological world: the shapes of 
sand dunes, the intricate patterns on a sunflower, the number and 
distribution of arthropod appendices, animal coat markings, and 
so on. In the biological domain these patterns or regular shapes are 
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typically manifested at the tissue level. Different types of theoretical 
and experimental approaches have been devised to explain the rich-
ness and variety of biological patterns. In particular, developmental 
and evolutionary biology aim to explain why and how these types of 
patterns arise.

The chemical basis of morphogenesis published by Alan Turing in 
1952 proposed a possible answer to the question of how a tissue can 
be patterned. Turing conjectured that cells respond to a chemical 
pre-pattern. He coined the term morphogen for a chemical to which 
cells would respond by differentiating in a concentration-dependent 
way. In order to generate spatial patterns in a chemical system, he 
considered a system of morphogens reacting and diffusing in such a 
way that, in the absence of diffusion, they produced a spatially uni-
form steady state which would also be stable. He then proved that by 
introducing diffusion into the system, one obtains instabilities that 
in turn lead to heterogeneous patterns of chemical concentrations. 
The surprising character of the results of Turing’s model becomes 
obvious when one considers the assumptions on which it was built. 
Turing took the reaction kinetics governing his system to be stabiliz-
ing. In addition, diffusion was known to be a stabilizing process in 
the sense that it homogenises spatial patterns. The unexpected result 
consisted in proving mathematically that the interaction of two sta-
bilising processes can produce an instability (now known as diffusion-
driven instability, cf. Murray 2003, Maini 2012).

2.1 Elements of a modelling strategy

It will be helpful to spell out a bit more Turing’s modelling strategy 
and mathematical techniques. The following presentation will re-
main largely informal, highlighting the main stages or components in 
the development of this modeling process. We can identify Turing’s 
starting point with the following question: how to account for the 
transformation of an initially perfectly symmetric embryo (repre-
sented in the model as a sphere) into a structured organism? Turing 
recasts this as the more general problem of the formation of patterns 
from an initial homogeneous state (Turing 1952). This phenomenon 
is also known as symmetry breaking. It might seem odd to talk of sym-
metry breaking in the case of Turing patterns given their spatial peri-
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odicity and organization into stripes and spots that respect the geom-
etry of the (biological) system. However this initial puzzlement can 
be easily discarded by noting that the symmetry breaking is defined 
in terms of the perfect or complete symmetry of the system in its 
homogeneous state (i.e., invariant under all translations, rotation, 
reflexions, inversions, and extensions). Mathematically, the symme-
try breaking is reflected in the fact that the solution of the dynamical 
equation has less symmetries than the equation describing the origi-
nal state of the system.

Turing offers the following account of symmetry breaking: ran-
dom perturbations of the homogeneous, perfectly symmetric state 
of the system will develop into very different states. Some of them 
will be cancelled out, while others will be amplified. The intrin-
sic dynamics of the system will thus select some fluctuations whose 
characteristics will be reflected in the final solution. Other fluctua-
tions will not have any effect upon the final state of the system. The 
behaviour of the system could in fact be modelled as other resonance 
phenomena by the study of a pendulum or of an oscillator. It is also 
important to point out that Turing recognized that the initial pertur-
bation of the system from its equilibrium state does not determine 
the characteristic features of the resulting patterns, but only the pos-
sibility of their production. The intrinsic instability of the dynamics 
determines the features of the different types of patterns produced. 
Thus, according to Turing’s model, the formation of patterns of 
morphogens is spontaneous—it does not require any predetermined 
pattern nor an external design or blueprint.

The dynamics that Turing modeled mathematically is the result 
of the interaction between various chemical reactions and the dif-
fusion of reactants, as suggested above. The Turing patterns thus 
correspond to spatially periodic variations of the concentrations of 
the different chemical substances reacting in a given situation. In the 
simplest case one assumes: an auto-activating substance A that also 
activates the production of another substance B; substance B inhibits 
the production of A, and B diffuses more quickly than A. Under 
these assumptions, a small local fluctuation can induce a small excess 
of the activator A which in turn accelerates the production of both 
A and B. The excess of B, which also diffuses more quickly than A, 
creates an inhibiting barrier around the initial point, isolating the 
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concentration of A with a region richer in B. In order to arrive at 
spatial patterns, one needs to consider several iterations of this pro-
cess. At a certain distance from the first fluctuation, another similar 
fluctuation can develop, creating another A region, and so on. The 
dynamically most stable partition of activator, determined by the se-
lective amplification of the many small fluctuations that affect spon-
taneously the state of the homogeneous mix of the two substances 
forms a periodic pattern.

Turing talks of stationary waves in order to designate this pat-
tern, but the term might be misleading since it suggests incorrectly 
that the dynamics of the RD systems is the same as that of the equa-
tions describing sound or light propagation. However, Turing is ex-
plicit about the fact that he models these molecular mechanisms at 
the macroscopical scale, i.e., in terms of the concentrations of the 
chemical substances being involved, making it clear from the outset 
that the model can provide at best only a rough approximation of the 
underlying molecular mechanisms.

The evolution of such a system over time is described by a system 
of differential equations (in the case in which the system is represented 
as a finite set of cells and their concentrations of the different chemi-
cal constituents) or by a system of partial differential equations (in the 
continuous case, where the system is represented via a set of continu-
ous functions in space and time). The basic equations for Turing re-
action-diffusion systems can be written as follows (cf. Murray 2003):

(1)   dc = f(c) + D∇2c
       dt
      

    

where c is a vector of morphogen concentrations, f is the reaction ki-
netics and D is the diagonal matrix of positive constant diffusion coeffi-
cients. The kinetics is, for all relevant situations, non-linear. The most 
common system studied mathematically is one involving two chemical 
substances (or species), with diffusion coefficients D1 and D2. In his 
mathematical analysis, Turing conjectured that if D1=D2=0 (diffusion 
is missing), c tends to a linearly stable uniform steady-state. If, on the 
other hand, D1≠D2, and certain other conditions are met, then spa-
tially inhomogeneous patterns can evolve. Turing’s analysis of the basic 
equations for a two-substance system is primarily a stability study.
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Equation (1) can also be presented in non-dimensional form, us-
ing the steady state of one of the morphogenes, and a typical length 
(L) and time (T) scales:

(2)	 ut = gf(u,v) + ∇2u, vt = gg(u.v) + d∇2v

where f and g describe the non-linear kinetics and u, v, g and d are de-
termined via dimensional analysis. In order to calculate the solutions 
for these equations, one also needs to fix the initial and boundary 
conditions. Zero flux boundary conditions imply zero external input 
and thus are the most relevant for studying the formation of morpho-
gen pattern in the absence of any chemical pre-patterns. The result 
of a linear analysis of equation (2), given initial and boundary condi-
tions is a dispersion relation l(k2), where k is the wave number of a 
disturbance. Numerical simulations (carried out by hand in the case 
of Turing) allow one to predict and explore the precise shape of the 
Turing instabilities and their corresponding patterns. Turing him-
self identified 6 types of instabilities: uniform/stationary, uniform/
oscillating, stationary waves with extremely short wavelength, oscil-
latory cases with extremely short wavelength, oscillatory cases with 
finite wavelength, and stationary waves with finite wavelength (cf. 
Kondo and Miura 2010). However, as I will show in what follows, 
the question of their relevance for the biological domain is a sepa-
rate issue from the stability analysis performed on the mathematical 
model and its associated technical challenges that arise when one 
considers the 3-dimensionality of the model or when RD systems are 
taken to involve more than 2 interacting substances.

The aim of the present section was to offer a broadly informal de-
piction of Turing’s modeling strategy and results. According to Tur-
ing’s theory, spatial patterns were the result of a process which he 
called “diffusion-driven instability”. The analysis of his mathematical 
model showed that small spatial fluctuations in what was otherwise, 
by assumption, a well-mixed system of reacting and diffusing chemi-
cals could become unstable. These fluctuations, Turing conjectured, 
could lead to a spatial pattern of chemicals that stimulated the devel-
opment of form or structure in an organism. These are the morpho-
gens. In other words, the spatial patterns of morphogens could serve 
as a pre-pattern for biological development.
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As mentioned above, two general features make Turing’s mathe-
matical model stand out: its simplicity (or minimality) and the way in 
which spatio-temporal patterns are mathematically generated in the 
model via a computational analysis of the characteristic state equa-
tions. In section 3 I return to show how these features can help us 
understand both the fruitfulness of Turing’s modelling strategy and 
its mixed reception among experimental biologists.

2.2 Extensions, challenges, and recent applications

Although restrained to a single article, Turing’s work on pattern for-
mation has had a significant impact in both mathematics and biology. 
In the former domain, the focus fell on exploring the rich variety of 
behaviours of the system of nonlinear parabolic equations, while ex-
perimental work in biology targeted the discovery and detailed analy-
sis of the structure of morphogens. The work of Hans Meinhardt and 
Alfred Gierer played a critical role in re-introducing and making rel-
evant Turing’s ideas in developmental biology. Their 1972 paper (cf. 
Meinhardt 1982) showed how to extend (or transform) the initially 
biologically unrealistic kinetics used by Turing in his modelling into 
more adequate kinetics that still preserved the central elements of his 
theory. This led to the formulation of the patterning principle known 
as ‘short-range-activation, long-range-inhibition’ (LALI). Its basic 
idea should be by now familiar from the analysis of Turing’s model. If 
one morphogen activates another morphogen which, in turn, inhibits 
the first morphogen, then the ensuing state is one of equilibrium. But 
if one allows the inhibitor to diffuse more quickly than the activator, 
then this equilibrium is no longer stable, since the proposed mecha-
nism leads to a local high concentration of activator, surrounded by a 
‘ring’ of high inhibitor concentration. This corresponds to a specific 
type of pattern. Exploring exactly what types of complex patterned 
structures might arise requires, as Turing had shown, a combination 
of mathematical analysis and numerical simulation. Consistent with 
this feature of Turing’s modelling strategy, Meinhardt’s general pat-
terning principle played a key role in the experimental discovery and 
investigation of Turing-like morphogen pairs. Meinhardt’s own pa-
pers present several examples, including phyllotaxis, segmentation, 
veins, and pigmentation patterns in sea shells (Meinhardt et al. 2003).
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An even more remarkable feature of the LALI patterning prin-
ciple is its compatibility with several mechanistic hypotheses about 
the processes underlying and driving morphogenesis. For instance, 
Oster and Murray’s mechanochemical theory of morphogenesis (cf. 
Murray 2003) differs both mathematically and biologically from 
Turing’s theoretical proposal. According to the mechanochemical 
theory, cells move through the extracellular material exerting large 
traction forces which deform it, and through the ensuing combina-
tion of active and passive transport processes, cells form different 
types of aggregates. Stripe formation in the visual cortex has been 
accounted in terms of neuronal firing mechanisms described by inte-
gro-partial differential equations, but this hypothesis is also compat-
ible with LALI being the dominant physical principle at play in these 
patterning processes.

The compatibility of general patterning principles like LALI with 
multiple biological hypotheses raises a first serious challenge for the 
utility of such mathematical models in biology. In brief, the prin-
ciple and its underlying justification cannot play a role in mechanistic 
model selection. If all the different mechanistic models produce the 
same types of patterns, one cannot use the general patterning princi-
ple to distinguish between candidate models. However, there is also 
a positive spinoff from this first problem for Turing-like models. This 
“insensivity” of this class of equations to the details of the pattern-
generating biological mechanisms allows scientists to formulate hy-
potheses about the physical and biological boundaries within which 
certain types of patterning phenomena will occur. These have also 
been characterized as developmental constraints and are often described 
as “rules” that a biological system (or organism) must follow in the 
course of development, irrespectively of its particular biological con-
stitution (e.g., Murray 2003, Maini 2012).

A set of related, and perhaps more important challenges con-
cerns the “behaviour” of Turing-like models when biological details 
are added to the picture. One of the earliest applications of Turing’s 
theoretical ideas was to pattern formation in developing Drosophila 
fruit fly. Experimental investigations led to the conclusion that the 
patterning in embryonic processes was actually due to a complex 
cascade of morphogen interactions. These results made many biolo-
gists wary of using Turing’s theoretical hypothesis in the explanation 
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of biological patterning. Even more sympathetic approaches had to 
admit that the model can be very sensitive to small changes in pa-
rameter values, initial morphogen fluctuations, and the geometry of 
the biological system in which pattern formation is studied. This put 
into question the ability of the model to produce, as robustly as it was 
initially suggested, the said spatial or spatio-temporal patterns (cf. 
Murray 2012, Maini et al. 2012).

Although definitive experimental proof that morphogens interact 
and pattern in the way Turing proposed is still lacking, a number 
of recent experimental studies may help to illustrate the epistemic 
potential of this modelling strategy and of its associated theoretical 
hypothesis for current biological research. Let us start with the Dro-
sophila herself. In a recent study, Dilão (2015) has used Turing’s mor-
phogenesis hypothesis to show that in early stages of the development 
of the Drosophila, mRNA diffusion is the main (or dominant) morpho-
genesis mechanism which is able to account for the patterns of the ex-
perimentally determined gradients of relevant proteins. Dilão points 
out that the results of numerical simulations establish the steady non-
uniform gradients of maternal and gap-gene families of proteins along 
the embryo of the Drosophila. Turing structures (patterns) have been 
shown to occur in chemical systems (Horvath et al. 2006, Tompkins 
et al. 2014) and a range of recent studies present evidence of their 
relevance in biological systems (eg. Othmer et al. 1992, Sick et al. 
2006, Kondo and Miura 2010, Economou et al. 2012).

One of the most widely discussed studies is Sick et al. (2006) 
which investigated the regulation of hair follicle patterning in de-
veloping murine skin. They proposed two proteins as morphogens 
(WNT and its inhibitor DKK). Knowing that hair follicle pattern-
ing occurs in waves, the authors were justified to use a reaction-
diffusion model to set up an initial pattern of follicles. They further 
assumed that these follicles were chemical sources giving rise to a 
second wave of hair follicle formation on a larger domain (due to 
growth of the skin). Their model predicted that the activator will be 
overexpressed, thus increasing follicular density, whereas moderate 
expression of the inhibitor during the initial wave will increase the 
interfollicular spacing. Having verified these predictions experimen-
tally, Sick and colleagues concluded that their study provides strong 
evidence for a genetic basis of a Turing reaction-diffusion model.
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As mentioned above, an increasing number of studies1 offer con-
verging evidence for the impact and utility of Turing’s theoretical 
hypothesis and modelling technique. One note of caution though is 
in order to avoid too sweeping conclusions about the relationship be-
tween mathematical modelling and experimentation in fields such as 
developmental biology. Despite the agreement between the models’ 
predictions and available biological experimental data, the studies do 
not rule out other potential mechanisms for producing the observed 
and simulated patterns. For instance, in the case of Sick et al.’s study, 
it has been argued that the follicle patterns can indeed be generated 
via a Turing-like process, but it is also possible for them to emerge 
without the type of chemical pre-pattern required by Turing’s model 
(i.e., via simple chemotactic movement in response to gradients in 
chemical concentration). This brings us again to the first problem 
we noted with respect to Turing’s model. Current experimental data 
cannot distinguish between candidate theoretical models. Maini and 
collaborators have pointed out that the next step in validating one or 
the other theoretical hypothesis requires overcoming the (primar-
ily) ‘experimental challenges in measuring key parameters (rates of 
production, decay, diffusion coefficients, etc.) so that quantitative 
tests can be performed to determine whether the system actually is 
of Turing type.’ (Maini et al. 2006: 1398)

Before turning to the evaluation of the philosophical significance of 
this partial story of the relationship between mathematical modelling 
and experimental investigation in developmental biology, a brief word 
about the challenges facing the extension of the mathematical side of 
Turing’s modelling technique. The Turing model has been studied 
primarily for the case of two interacting morphogens, where it has 
been shown to generate a wide array of spatial and spatiotemporal pat-
terns. Even if these patterns have been studied numerically in detail, 
from an analytic perspective, the existing results are very limited. 
While pattern formation is linked to linear stability analysis, the non-
linear case supports only weakly the same type of connection. Ex-
tending the analysis to three or more interacting morphogens makes 
even the linear stability problem a challenge, which is currently solved 
only for a limited number of special cases. Rather than extracting a 

1 For an extended list of references, see Cooper and Maini 2012.
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general scepticism towards Turing’s proposed set of equations, prac-
ticing mathematicians take them as sources of motivation for develop-
ing new techniques for analysing their behaviour (i.e., the emerging 
patterns) under a wider range of conditions, some of which might be 
relevant in a natural or in a synthetic biological setting.

3 How Turing models explain

How can we defend the claim that minimal models like Turing’s re-
action diffusion model can be used to provide adequate explanations 
of aspects of biological development? For this we need to specify first 
what counts as the explanandum, the explanans, and the explanatory 
connection established by Turing’s minimal model. In addition, we 
should say something about the standards of explanation that apply in 
the relevant research context. In this case, the standards are related 
to the scientific knowledge available when Turing was developing his 
model and the reliability of the mathematical techniques being used.

Turing himself took the target of the explanation to be the phe-
nomenon of morphogenesis, i.e., the generation of the shapes and 
patterns observed in living organisms. But closer scrutiny of the sim-
plifying and idealizing assumptions on which the model was based 
leads to the identification of a more modest explanandum, viz. bio-
logical pattern formation. The explanans consists in the postulated 
interaction between two types of processes: chemical reactions and 
diffusion. The stability analysis performed on the system of coupled 
differential equations that describe this type of interaction yields a 
set of solutions corresponding to different types of spatio-temporal 
patterns with observable analogs in biological systems. Lastly, the 
derivation of the solutions of the system of state equations corre-
sponds to the explanatory connection between the explanandum and 
the explanans. These three elements help us pin down the structure 
of the explanation based on Turing’s mathematical model, but they 
still leave open the question about the biological relevance (or ad-
equacy) of the proposed explanation.

It is not hard to see how this relevance issue might arise. Af-
ter all, in delimiting the explanandum or target of his mathemati-
cal model, Turing left out almost all biological features of the liv-
ing cell. Instead his model works with two minimal assumptions: a 
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geometrical assumption about the spherical shape of the cell and a 
chemical assumption concerning the substances that interact within 
the cell during developmental processes. Even the reaction kinetics 
Turing did use in the model were not premised on any experimental 
data. Instead, the simplest chemical reactions were used to secure 
the tractability of the mathematical calculations. Claiming that the 
explanatory value of the model can be vindicated solely in light of 
the similarity between the computed solutions and some types of 
patterns observed during development seems too weak. So, can we 
justify the explanatory value of Turing’s minimal model?

The answer that Turing’s model provided to the question of how 
patterns arise during the development of a biological system was 
compatible with two key theoretical assumptions accepted at the 
time about biological development: (i) genetic conservation under 
cell division, and (2) the absence of causally effective inhomogene-
ities in the egg’s cytoplasm. Notice that the idealizations introduced 
by Turing to model the developing embryo were compatible with 
these two key assumptions. Thus, even if the target of Turing’s model 
was an imaginary system of reacting diffusing substances, there was a 
way to link it back (even if only minimally) to the real biological sys-
tem. Turing’s minimal explanation was thus in line with the available 
standards of biological knowledge. This general agreement, together 
with the reliability of the mathematical techniques employed support 
the claim that Turing’s model provided a clear plausible description 
of the basic physical processes involved in biological pattern forma-
tion. Not only was Turing’s explanation a how-possible or how-plausible 
account of the processes governing pattern formation, but it was the 
only physically viable account derivable from the background knowl-
edge available at the time about biological development.

So far, we have made a case for the explanatory value of Turing’s 
model, focusing on its minimality. We still need to clarify the epis-
temic contributions that mathematics makes to this explanatory re-
sult. First, mathematical concepts and techniques (operations) play a 
descriptive role in specifying the explanandum, the explanans and the 
derivation that connects them. Second, mathematics helps structur-
ally by allowing the formulation of the explanation at an appropriate 
level of generality (cf. Yablo 2012). To clarify further the latter type 
of contribution we can turn to two of the applications of Turing’s 
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mathematical model mentioned in section 2.
As a first example consider Murray’s reaction-diffusion models 

(Murray 2003) of the formation of patterns on the coats of various 
mammals (leopard spots and zebra stripes). In Murray’s models, the 
activator induces melanocytes (cells that are responsible for the pig-
mentation of the epidermis) to produce melanin (pigment), while 
the repressor inhibits the production of the melanin. The explanan-
dum in this case is the variation in pigmentation patterns that occurs 
despite the fact that similar processes (involving the same kinds of 
cells and many of the same proteins) are involved in coat pattern 
formation. The corresponding explanans is a reaction-diffusion sys-
tem that also includes a parameter standing for the geometry of the 
organisms compared. Differences in the geometries of bodies are 
represented in the parameters of scale that yield different equilib-
ria for the diffusion of the same type of molecules. The derivation 
shows that the same reaction diffusion process can yield different 
coat patterns depending on the choice of scale parameters. Note that 
Murray’s explanatory minimal models require only the specification 
of the basic properties of activators and inhibitors, the initial concen-
tration of the activator and the inhibitor, the scale parameters of the 
system and the differential equations describing the diffusion of mol-
ecules. More specific biochemical properties, such as the types of 
genes involved or the structure of the protein chains are not required 
to derive the relevant patterns. It is in this sense that the mathemati-
cal features of the model play a structural role: they enable the for-
mulation of the explanation at an adequate level of generality.

A similar lesson can be drawn from Meinhardt’s (1982) model 
of sea shells patterning. In this case, it is the cellular interactions 
which determine shell coiling that are modeled in terms of activator-
inhibitor systems and rates of diffusion. Unlike in the case of coat 
patterning, which involves the same kinds of cells in most mammals, 
pigmentation patterns and relief patterns in sea shells are produced 
by different types of cells and proteins. However, reaction-diffusion 
equations can be applied to model and explain the similarities ob-
served in coiling phenomena. Abstracting away from the specific 
identity of the morphogens that diffuse and interact with one anoth-
er, and focusing on the geometry of the field over which the morpho-
gens diffuse, the model can be used to derive the types of patterns 
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observed in many types of sea shells. Thus, while Murray’s minimal 
model aims to explain the variation of outcomes of similar biochem-
ical processes, Meinhardt uses the same type of model to explain 
similarities in patterns produced by different biochemical processes. 
The explananda of the two models are different, but the explanans is 
the same: a reaction-diffusion system which abstracts away the bio-
chemical properties and identity of the proteins involved. Therefore, 
Murray’s minimal model explanation establishes how different sys-
tems can use very similar processes to produce different patterning 
outcomes, whereas Meinhardt’s explanation shows that the same pat-
terning effect can be obtained via a series of different causal pathways.

Despite their differences, the minimal model based explanations 
discussed in this section make up a distinctive class in the explana-
tory repertoire of developmental biology. Turing reaction-diffusion 
models can be viewed as an instance of minimal mathematical model-
ing that aims to uncover the dominant physical processes that are 
responsible for the generation of complex biological phenomena (cf. 
Batterman 2002, Weisberg 2007, Love and Nathan 2015). I suggest 
that the output of Turing’s modelling strategy is best interpreted as 
establishing minimal internal constraints on the processes that lead to 
the development of specific spatial and spatio-temporal shapes in dif-
ferent biological organisms (cf. Amundson 2005).

It is tempting at this point to construct minimal-model-based 
explanations as a subspecies of causal explanations. After all, the 
common explanans of the explanations analyzed above refers to the 
physical processes that determine or govern the production of biologi-
cal patterns. The terms involved in the specification of the explan-
ans bear, at least semantically, the “mark” of causation. So are these 
minimal explanations a type of causal explanation or should they be 
conceived as a class of non-causal abstract explanations (Pincock 2015, 
Baron and Colyvan 2016)?

One reason to resist calling minimal explanations causal has to 
do with the way we have described the explanatory connection pos-
tulated by these minimal models. But here we must be careful not to 
mistake what belongs to the model with what belongs to the target 
phenomenon. It is true that the mathematical derivation links the ex-
planandum to the explanans in the model, but no corresponding claim 
has been made about the link between pattern formation and the 
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reaction-diffusion processes that the model postulates as the domi-
nant physical factors in the world. On the other hand, it would also 
be misleading to construct minimal explanations as a subspecies of 
material causal explanations (Fox Keller 2003, Love 2008). Material 
causal explanations appeal to specific mechanisms or entities (specific 
genes, proteins etc.) to explain the occurrence of a particular (type 
of) effect. But these are not the only types of causal explanations en-
countered in the sciences. Structural causal explanations specify the 
conditions or constraints under which a certain type of effect (e.g. 
pattern formation) occurs.2 The explanations based on Turing-like 
reaction-diffusion models specify such minimal constraints on the 
processes involved in biological pattern formation. As our analysis 
showed, these explanations can stand on their own feet in specific 
research contexts where they provide adequate answers to certain 
explanatory questions. Other times, they can also figure as partial 
accounts of a more complete causal account of morphogenesis. In 
this sense, it seems legitimate to talk about the explanatory contribu-
tions that such minimal models make to the broader investigation of 
biological morphogenesis.

A different classificatory scheme can help us sharpen the thesis 
about the explanatory value of these minimal models. Marco Nathan 
(2012) calls reaction-diffusion based explanations, morphological ex-
planations because they focus solely on the form or shape properties 
of biological systems. He distinguishes them from genetic explanations 
which cite, as explanatory factors, structural and functional proper-
ties of nucleic acids and proteins. In contrast, the explananda of mor-
phological explanations are properties of biological systems specified 
at a certain level of generality, while their explanantia involve geo-
metrical or scale properties that determine the shape of the solutions 

2 Another way to pin down the contrast relevant for the two types of caus-
al explanations is Dretske’s distinction between triggering causes and structuring 
causes: ‘In looking for the cause of a process, we are sometimes looking for the 
triggering event: what causes the C which caused the M. At other times we are 
looking for the event or events that shaped or structured the process: what caused 
C to cause M rather than something else. The first type of cause, the triggering 
cause, causes the process to occur now. The second type of cause, the structuring 
cause, is responsible for its being this process, one having M as its product, that 
occurs now … .’ (Dretske 1988: 42)
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to the postulated reaction-diffusion equations. A third type of expla-
nation encountered in developmental biology are morphogenetic ex-
planations which combine material and structuring causal informa-
tion to answer certain questions about developmental processes. One 
example of the latter type of explanation is the account of axis forma-
tion in Drosophila sketched in section 2. Minimal internal constraints 
(geometrical properties of the system and dispositional properties of 
reactants) are invoked in this account via the reaction-diffusion model 
employed to answer explanatory questions about segment specifica-
tion in Drosophila. However, molecular information about the specific 
genes involved (hemoglobin) is also required to explain the segmenta-
tion process. That is, the parameters that control what happens with 
each nucleus include both the interactions of genes and gene products 
and the spatial organization of the embryo that imposes constraints 
on the concentration of morphogens in the oocyte. As Nathan points 
out: ‘Both molecular details and geometrical properties of the system 
are necessary to explain the segmentation of Drosophila, but neither 
is, by itself, sufficient’ (Nathan 2012: 248).

I have argued that explanations based on minimal models such 
as Turing’s reaction-diffusion models can account for certain mor-
phological features of biological systems. They provide informa-
tion about the minimal internal constraints or structuring causes 
that are responsible for the occurrence of certain types of patterns.3 
Minimal explanations can be combined or coordinated with other 
types of explanatory information yielding morphogenetic explana-
tions of more complex targets such as the developmental process of 
axis formation. The take home message here is that the explanatory 
contributions of such minimal models is not cancelled out by the 
possibility to embed, extend or otherwise alter the original mini-
mal models to construct other types of biological explanations. The 
standards of explanatory satisfaction applicable to the evaluation of 

3 It is worth pointing out that conceiving minimal explanations as structural 
causal explanations is compatible with several philosophical accounts of the nature of 
causation. In particular, the proposed account is friendly to Woodward’s interven-
tionist notion of causation (Woodward 2003). However, clarifying the link between 
the two conceptions would require a separate investigation, especially since none of 
the applications of Turing minimal models discussed in section 2 directly illustrates 
the interventionist methodology on which Woodward’s conception is based.
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morphological explanations might be different from those applicable 
to the evaluation of genetic or morphogenetic explanations, but they 
are epistemically on a par.

4 A functionalist perspective on explanation

Our analysis so far has focused on clarifying the structure of mini-
mal explanations of biological pattern formation and identifying the 
explanatory satisfaction (or adequacy) conditions applicable to this 
family of explanations. But there is a broader lesson about scientific 
explanation to be extracted from the survey offered in section 2. 
The question that can help us unlock it is: What are the roles (or 
epistemic functions) that explanations play in scientific practice? 
Thinking about the roles that explanations play in science allows us 
to articulate the links between explanation and other epistemic out-
comes of scientific research, such as description, generalization, pre-
diction, and control, etc. Andrea Woody (2015) has used a similar 
question to promote a reorientation of philosophical debates about 
scientific explanation that would correspond to a more adequate de-
scriptive account of the explanatory activities of practicing scientists. 
I agree with Woody that the functional perspective is very important 
in philosophy of science, but my aims are more modest than refor-
mulating the debates about the problem of explanation. I believe that 
the functional perspective can help strengthen some of claims made 
about the explanatory value of minimal models by placing them in a 
broader epistemic landscape.

The following is not intended as an exhaustive list of the epis-
temic roles that explanation may play in scientific practice. It is also 
a “biased” list in the sense that it is derived from the survey provided 
in section 2. With these caveats in place, we can point to the fol-
lowing roles of explanation: providing standard descriptions of the 
objects of scientific investigation, communicating the results of dif-
ferent modelling techniques, establishing links between different 
domains of scientific knowledge, creating templates of intelligibility 
for specific scientific domains, facilitating the coordination between 
theoretical hypotheses and experimental investigation, enabling fur-
ther applications of the models or modelling techniques on which the 
explanation is based, and providing exploratory tools for new topics 
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of scientific investigation. Next I aim to illustrate how focusing on 
some of these roles can help us better understand the links between 
the epistemic uses of minimal models.

First, note that Turing’s minimal mathematical model is highly 
modular in that it can be extended in various ways, viz. by specifying 
different reaction kinetic functions and considering different param-
etrizations of the characteristic differential equations. Such modified 
versions of Turing’s reaction-diffusion model have been used in re-
cent studies to derive and study, via numerical simulations, a wider 
range of patterns that might be relevant in natural and synthetic bio-
logical settings. These simulations have yielded a wide range of pre-
dictions which are compared with experimental data about naturally 
occurring biological patterns. In light of these observations, we can 
claim that Turing’s reaction diffusion models provide standardized 
descriptions of some of the targets investigated in developmental bi-
ology: different types of spatial and temporal patterns. They also 
have been used as exploratory tools to investigate a wide range of bi-
ological systems at different levels of organization. The modularity of 
Turing’s models has been a key factor in encouraging these additional 
applications which in turn have led to the creation of stronger con-
nection between biological theorizing and experimental investiga-
tion of developmental systems. These functions of the explanations 
based on Turing’s models allow us to see the connections between 
the explanatory, predictive, and control uses of this class of models. 
The extensions of Turing’s reaction-diffusion model made possible 
novel predictions about specific causal factors involved at different 
stages in the developmental process. Because they provide an intelli-
gibility template in developmental biology, reaction diffusion models 
can be used (albeit in a limited way) for the purpose of mechanism 
comparison and analysis.

Marking the connection between the different epistemic virtues of 
a class of models is not a novel idea in philosophy of science. The nov-
elty resides in the way in which this connection has been introduced. 
I suggested that when one focuses on the roles or epistemic fuctions 
that explanation plays in science, it is possible to show that having a 
minimal explanation can sometimes increase the descriptive, predic-
tive or control power that scientists have in specific research con-
texts. Admitting to a more dynamic interplay between the epistemic 
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virtues of minimal models motivates a more general diachronic view 
of the process of scientific explanation to which I now turn.

5 Towards a diachronic study of scientific explanation

Some models are good predictors and bad explainers, others explain 
without producing novel predictions, while yet other models are 
fruitful heuristic tools aiding in the formulation or refinement of ex-
perimental and theoretical hypotheses. Surely we should allow our 
scientific models to be more promiscuous than the theories which we 
enlist in our repository of trusted scientific knowledge. So why insist 
on the complementarity of the epistemic functions of scientific, or 
more specifically in this case, of minimal mathematical modelling?

The rationale is simple and it does not directly conflict with the 
intuition encapsulated in the previous remarks. It amounts to the 
request for an epistemological account that would make sense of 
the productive interactions between experimental, theoretical, and 
mathematical modelling currently pursued in many fields of biol-
ogy (Brigandt 2013). While evidential and, more broadly, method-
ological opportunism might recommend the adoption of multiple 
modelling techniques for their more immediate epistemic gains, a 
stronger normative desideratum is to recruit those models which can 
fulfill more than one epistemic function since this would facilitate 
a smoother integration of the different approaches that target the 
understanding of the same biological phenomena (Love and Lugar 
2013, Love and Nathan 2015).

I propose that a diachronic view of model-based explanations pro-
vides a good framework for thinking about how different explana-
tions might be coordinated or integrated in different areas of biologi-
cal research. The core idea is that explanations, in science, just as in 
other areas of human inquiry, are dynamic. They can be adapted and 
transformed to fit the other epistemic activities that we deem worth-
while pursuing as part of scientific research. Is this dynamic picture 
of explanation unstable or unsystematic? No. It admits a variability in 
explanatory judgments that is driven by various epistemic and non-
epistemic factors, but not at the price of trivialization. Any philosoph-
ical account of the structure of explanation should include the fact 
that an explanation provided in a specific context of inquiry selects 
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and presents in an adequate representational format a dependence rela-
tion that holds between the feature or behaviour of the target system 
identified as the explanandum, and the explanans. These dependence 
relations might be construed as: constitution relations that specifies 
the components parts and properties of the system taken as the ex-
planandum, general lawful statements that subsumes the explanan-
dum, or material or structural causal relations (cf. Pincock 2015). 
Different philosophical models of scientific explanation typically spell 
out in more detail the nature of the explanatory dependence relation. 
This essay has attempted to do the same for minimal explanations 
based on the class of reaction-diffusion models originally proposed by 
Turing. It has been argued that these models provide structural causal 
information that links the explanandum (biological patterns) to the 
explanans (the interaction of reaction and diffusion processes).

The analysis of Turing’s modelling strategy and its recent ex-
tensions and applications in developmental biology illustrates this 
diachronic view of explanation. Depending on the empirical ques-
tions being asked in different inquiry situations, the mathematical 
elements of Turing’s model can be said to play a more or less central 
role in the construction of an adequate biological explanation. Tur-
ing models can be both explananda and explanantia, depending on 
the type of inquiry one engages in. Numerical simulations of ex-
tended and refined Turing models of various biological patterning 
processes enable the accumulation of novel predictions that need to 
be compared and assessed against experimental data. Mathematical 
analyses of Turing-like systems of parabolic equations might suggest 
new causal hypotheses about the processes underlying pattern for-
mation in different types of systems. The investigative paths pursued 
in developmental biology support the contention that Turing models 
can serve multiple epistemic functions in biological research, which 
foster further collaborations between mathematical and mechanistic 
methodologies in the investigation of biological phenomena.

6 Conclusion

What explains the resilience of minimal mathematical models, such 
as Turing’s model of pattern formation, in empirical research carried 
out in the life sciences? I have argued that minimal mathematical 
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models can identify and test hypotheses about the dominant physi-
cal features of the phenomena biologists are trying to explain and 
understand. In some research contexts, these features can be viewed 
as internal constraints on the local mechanisms that produce the ob-
served biological phenomena. Such minimal mathematical models 
also aid in structuring the epistemic practices of biology by provid-
ing precise descriptions of the quantitative relations between various 
features of the complex systems, by generating novel predictions that 
can be compared with experimental data, by promoting theory ex-
ploration, and by acting as constitutive parts of empirically adequate 
explanations of naturally occurring phenomena, such as biological 
pattern formation. Focusing on the roles that minimal model expla-
nations play in science motivates the adoption of a broader diachronic 
view of scientific explanation.
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