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Abstract
In this paper I analyze the process by which modelers in systems biol-
ogy arrive at an adequate representation of the biological structures 
thought to underlie data gathered from high-throughput experiments. 
Contrary to views that causal claims and explanations are rare in sys-
tems biology, I argue that in many studies of gene regulatory networks 
modelers aim at a representation of causal structure. In addressing 
modeling challenges, they draw on assumptions informed by theory 
and pragmatic considerations in a manner that is guided by an interven-
tionist conception of causal structure. While doubts have been raised 
about the applicability of this notion of causality to complex biological 
systems, it is here seen to be an adequate guide to inquiry.
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1 Introduction

Over the last two decades, theories and techniques of data-driven 
modeling, including causal modeling (cf. Spirtes et al. 1993, Pearl 
2000), have become integrated into the study of complex biological 
systems. The growth of high-throughput data collection has made 
it necessary to develop sophisticated computational and statistical 
methods to illuminate patterns and underlying structures in a new-
found wealth of information. In particular, researchers have devel-
oped algorithmic processes to infer networks of interaction among 
the components of a biological system. This approach to modeling 
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biological networks has been characterized as a “top-down” ap-
proach, being opposed to a “bottom-up” approach that builds up a 
functional understanding of cells from a study of the interactions of 
constituent molecules (Westerhoff and Kell 2007).1

Some authors have responded to the proliferation of mathematical 
modeling in systems biology by arguing that much of the field is root-
ed in a general, non-causal and non-mechanistic form of understand-
ing (Wouters 2007, Braillard 2010), but there are reasons to doubt 
the generality of such claims. For one, much of the study of cellular 
networks—a significant research program in systems biology—can 
be broadly understood within the framework of mechanistic science, 
as I have argued elsewhere (Matthiessen 2015). Second, the inves-
tigation of network structures is very often motivated and guided 
by a specific conception of their causal structure that accords with 
mechanistic inquiry (as described, for example, in Woodward 2013).

In what follows, I aim to analyze the strategies by which systems 
biology researchers refine and specify models in a highly data-driven 
context so as to extract informational structures designed to pro-
duce reliable predictions with respect to some phenomenon. I do 
not intend to show that all modeling efforts found under the wide-
ranging banner of systems biology are fully compatible with the goals 
of causal and mechanistic explanations,2 but instead to describe how 
methods and assumptions routinely employed in these data-driven 
contexts demonstrate a clear concern with capturing causal struc-
ture. Researchers explicitly interpret these models as bearing infor-
mation about the causal structure of their target systems, and it is 
evident that a specific conception of causality is built into these inter-
pretations—one that roughly corresponds to interventionist notions, 
which themselves might be thought to dovetail nicely with mecha-
nistic inquiry (cf. Craver 2007, Woodward 2010). These assump-
tions in pursuit of specific causal information play an integral role in 
model specification, that is, the process by which researchers arrive at 
a model of a particular phenomenon or its underlying structure that 

1 This distinction cross-cuts with another useful distinction: that between molec-
ular systems biology and systems theoretic systems biology (cf. De Backer et al. 2010).

2 For a recent challenge to this claim that is highly attentive to the modeling 
practices of systems biologists, see MacLeod and Nersessian 2015.
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includes a satisfactory amount of detail to aid in the explanation and 
prediction of experimental data.3,4 

In section 2, I describe the aims of modeling in systems biolo-
gy and present a basic sequence of stages of modeling specification 
through which these aims are realized. In section 3, I show how as-
sumptions and complications arise in ways that are specific to each 
stage. In section 4, I describe the use of causal concepts in this pro-
cess. Accounting for the stages of model specification is a fruitful 
way to examine the various modeling decisions and accompanying 
instances of inductive risk balancing5 encountered by systems biolo-
gists along with the concepts that provide pragmatic footholds for 
such decisions, and I believe a comparable process can be observed 
in other scientific fields as well—in the investigation of the electron-
ic structures of molecules and materials, for instance. With this in 
mind, I will conclude with some remarks on aspects of these strate-
gies that serve to characterize the general epistemology of modeling, 
at least as it figures in data-driven contexts.

2 The aims and stages of modeling in “top-down” systems 
biology

There are many things that may count as a biological network. For 
the purposes of this paper, I will focus on models of what are called 
regulatory or signaling networks in individual cells. These are com-
plex networks of interactions between various forms of macromol-
ecules—primarily genes, proteins, transcribed RNA, and metabo-
lites—that maintain the stability of a cell in response to its internal 
and external environment. In order to understand how cell networks 
function, researchers must first generate data. In one common tech-
nique, mRNA samples, often from of a single-cell organism like E. 
coli or S. cerevisiae, are extracted from cells exposed to experimental 

3 What counts as satisfactory is of course determined in some respects by 
modelers’ purposes.

4 This notion of model specification is partially inspired by the progressive 
concretization of modeling constructs described by McMullin (1985: Section 4).

5 Cf. Douglas 2000.
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conditions and combined with a luminous protein. These are placed 
onto microarrays—glass, plastic, or silicon chips that contain thou-
sands of probes designed to detect specific mRNA sequences. Each 
site in the microarray contains a DNA sequence corresponding to a 
specific gene of the organism.6 These are molecular complements 
to the distinct mRNA in the sample, which thus accumulate at the 
site of the gene from which they are transcribed. Robotics measure 
the luminosity of the mRNA at each site on a microarray, thereby 
obtaining a measure of the activity of their corresponding genes. 
Multiple parallel experiments may be carried out at once, yielding 
large quantities of data. In fact, so much data is produced that cu-
rated databases are used to store the results, but it is important to 
note that difficulties in accuracy attend to this process. Most data-
bases are not designed to account for context-sensitive gene activity; 
high-throughput analyses often fail to detect rare events or unstable 
interactions; and the data available for model organisms usually ad-
dress a small number of cell processes and experimental conditions 
(De Backer et al. 2010). There is a sense, then, in which systems 
biology is both data rich and data poor. The challenge for researchers 
is finding an appropriate way to infer an adequate network of interac-
tions from data drawn from experiments, mined from databases, or 
sourced from extant publications.

Data generation, such as that described above, may be viewed as 
the first of a sequence of stages by which systems biologists arrive at a 
reliable representation of the phenomenon of interest. Figure 1 gives 
a highly schematic illustration of this sequence:

6 In the case of E. coli and S. cerevisiae, the entire genome of the organism is 
known and so a complete measurement of gene expression is available by includ-
ing all genes on the microarray.
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Figure 1: The stages of model specification in systems biology.

Each of these stages involves the incorporation of different assump-
tions drawn from theory or modeling practices, which aid in the 
eventual determination of a single representation of the network 
responsible for the data. Theoretical assumptions7 tend to provide 
general guidelines and restrictions on the modeling practice, for 
instance by providing grounds for drawing inferences about a fea-
ture of a model from particular features of the data, or by supplying 
reasons for rejecting certain model types or tokens deemed to be 
biologically impossible. Modeling assumptions pertain more closely 
to the specific type of representation chosen, frequently reflecting 
pragmatic decisions made in the face of computational obstacles. As 
much of the recent literature on modeling and simulations has noted, 
modeling assumptions do not always acquire their warrant from the-
oretical commitments, but may instead be sanctioned on the basis of 
data-fitting calibrations and interventions, exploratory aims, or, as I 
mentioned, pragmatic decisions made in the face of limitations such 
as computational intractability (Cf. Cartwright et al. 1995, Morgan 

7 I’m not using ‘assumptions’ here in the sense of propositions that are entirely 
lacking in empirical or theoretical support. I only meant to indicate the way that 
they arise in the modeling context, that is, as constraints that are built into the 
model and so are assumed in its results.
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and Morrison 1999, Winsberg 2010). Note, finally, that the pro-
gression through stages depicted here may not be passed through in 
a perfectly linear order: for instance, the models generated on the 
basis of a particular model choice may conflict so much with back-
ground knowledge or with model diagnostics that they force a return 
to a prior stage.

A substantial portion of the modeling strategies in systems biol-
ogy and beyond consist of trade-offs between the computational op-
portunities afforded by particular assumptions or techniques and the 
inductive risks that accompany them.8 For instance, one very broad 
assumption is built into the data generating technique described 
above: it is assumed that the presence of transcription factors such 
as mRNA bear a functional relationship to gene expression, and so 
measurements of mRNA are indirect measurements of gene activity. 
In a review of network modeling techniques, He et al. (2009) state 
that questions remain regarding the overall trustworthiness of this 
assumption. Thus the practice of modeling networks is carried out 
in the face of a number of uncertainties about its ultimate validity. 
Whether it ultimately stands or falls will depend on the extent to 
which its modeling assumptions are justified by background knowl-
edge and mechanistic understanding of the biological underpinnings 
of cellular networks.

3 Stage-specific assumptions and trade-offs

3.1 Choice of model type

Having generated their data, researchers are first tasked with choos-
ing a model type, that is, a general means of processing the data 
and representing the complex of biological mechanisms that give 
rise to it. In the case of gene expression profiling, a number of core 
methods available for this task involve building point-and-line graphs 
in which the nodes represent genes and the edges represent some 
form of dependency relation (derived algorithmically from the data) 
between these genes. Available dependency relations include differ-

8 For a classic account of modeling trade-offs, see Levins 1966.
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ential equations describing relationships between gene expression 
rates, or statistical methods such as measurements of the correla-
tion coefficient between two genes, measurements of their mutual 
information, or measurements of the “similarity” (defined in one of 
numerous ways) between their expression patterns.

Any choice incorporates different biological assumptions that 
may limit the informativeness of the resulting graphical model. For 
instance, simple graphs called co-expression networks are built using the 
statistical correlation coefficient, which can measure the degree to 
which variable quantities change with one another, but is insensi-
tive to non-linear dependencies. If the expression rate of one gene is 
actually a non-linear function of another, then this relationship will 
be missed by algorithms that build edges by means of correlation. 
In cellular networks with many interacting components, non-linear 
feedback relations are often encountered that render simple corre-
lation-based models potentially unreliable. On the other hand, the 
use of Gaussian probability distributions to represent the state of a 
node—which is the main source of insensitivity to non-linearities—
allows for the representation of expression levels as continuous val-
ues. Abandoning them for the sake of higher representational fidelity 
with respect to one network feature therefore requires coarse-grain-
ing another feature.

In an early proposal to move beyond co-expression networks, 
Friedman et al. write, ‘Such analysis has proven to be useful in dis-
covering genes that are co-regulated and/or have similar function. A 
more ambitious goal for analysis is to reveal the structure of the tran-
scriptional regulation process’ (Friedman et al. 2000: 602). Part of 
the motivation for finding alternatives to co-expression networks is 
due to the fact that they are underdetermined with respect to repre-
sentations of regulatory interactions between genes, as exemplified 
by Figure 2:

Figure 2: Correlational underdetermination of regulatory interactions.
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The use of directed edges in Figure 2 is to show a direct regulatory 
effect of one gene on another. The figure illustrates that there are 
multiple possible regulatory relations explaining each co-expression 
measurement. With the undirected correlation graph on the left, 
one cannot distinguish between several possible regulatory networks 
that may have given rise to it; similar patterns in data could arise (1) 
from chaining, (2) from one gene regulating multiple others, or (3) 
from a common ‘hidden’ regulator. Thus a single co-expression net-
work will give rise to a number of hypothetical regulatory structures 
that grows exponentially with the number of nodes.

Determining the actual regulatory network from expression data 
is highly non-trivial. In one of the most favored approaches, Bayes-
ian network algorithms are used to encode further network struc-
ture and overcome some basic forms of model underdetermination.9 
Since only direct regulatory relationships are assumed to result, this 
technique allows for the construction of graphs with directed edges 
(i.e., arrows) showing determinate pathways of regulatory influ-
ence. The use of Bayesian networks is motivated in part by back-
ground knowledge of the structure of complex biological systems. 
For example, Sachs et al. write,

There are several attractive properties of Bayesian networks for the 
inference of signaling pathways from biological data sets. Bayesian 
networks can represent complex stochastic nonlinear relationships 
among multiple interacting molecules, and their probabilistic nature 
can accommodate noise that is inherent to biologically derived data. 
They can describe direct molecular interactions as well as indirect 
influences that proceed through additional unobserved components, 
a property crucial for discovering previously unknown effects and 
unknown components. Therefore, very complex relationships that 

9 I will give special focus to Bayesian networks in the following sections. Here 
nodes X i and Xj are only connected by an edge if their genes’ activity is correlated 
and, knowing the behavior of all other genes and subsets of genes in the system, 
the behavior of X i still yields additional information about Xj. That is, the condi-
tion for drawing an edge between nodes representing genes X i and Xj is that they 
are correlated and:

~(X i ⊥ Xj) | XS for all S ⊆ V\{i, j}

where V is the complete set of nodes, S is a subset of nodes, and XS is the collec-
tive activity of this subset.
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likely exist in signaling pathway architectures can be modeled and 
discovered (Sachs et al. 2005: 523–4).

Having a higher-resolution model of the regulatory interactions with-
in a gene network clearly provides a more reliable tool for the predic-
tion and discovery of further dependency relations within a cell. As 
the authors note, Bayesian networks are capable of representing this 
information in a way that accommodates additional understanding 
of the noisiness of biological measurements, the incompleteness of 
current knowledge of network components, and so on. The choice of 
model type is thus intertwined with the predictive aims of research-
ers and their established understanding of their subject matter drawn 
from related and overlapping research programs.

3.2 Model generation

Directed graph models of the entire network are generated by means 
of computational procedures designed to score them in terms of how 
likely they are to fit the data. A typical way of scoring the likelihood 
of a model G compares (i) the probability that one would observe the 
data set under consideration given the network topology10 of G to 
(ii) the probability of seeing this data averaged over all possible mod-
els. For even the simplest metrics, the global problem of finding the 
best-fitting graph is NP-hard (Chickering 1996; with Heckerman 
and Meek 2004). Instead, researchers must employ search-and-score 
heuristics. Perhaps the simplest heuristic is a greedy search: starting 
from a prior graph representing minimal biological knowledge, dif-
ferent graphs that are ‘nearby in search space’ are tested by adding 
or removing single edges at different locations in the graph.11 Each of 
these graphs is scored, the highest-scoring of them is selected as the 
new prior, and the process repeats. Each heuristic involves different 
trade-offs in false positives and false negatives, and their accuracy 
can be measured and compared by simulating data through an artifi-

10 A network topology describes the general spatial characteristics of a 
graph—the average number of edges connected to a given node, whether it is 
fully connected or if there are disconnected sub-networks, etc.

11 More complex concepts of neighborhood in search space can be employed in-
stead, but difference by a single edge is perhaps the simplest and most intuitive option.
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cial network and seeing how well each heuristic reproduces it (as in 
Yu et al. 2004). Finally, heuristics are also subjected to robustness 
analysis, where parameters such as quantity of data and data discreti-
zation are varied. In one such study, Bayesian network inference and 
scoring algorithms were found to perform best when the quantity of 
data greatly exceeds the number of genes being modeled, whereas 
information theoretic approaches perform better with fewer experi-
ments, but are more prone to false positives in other cases (Bansal 
et al. 2007). Choice of model type will therefore depend not only 
on the type of information researchers seek to represent, but also 
likelihood of generating reliable models based on constraints such as 
the amount of available data. When resources do not permit a large 
number of experiments, Bayesian network algorithms may not pro-
vide the best results.

3.3 Model selection

Despite the high resolution of Bayesian networks and these scoring 
procedures, a vast number of data-accommodating networks can still 
be generated. For the majority of cases, the choice between high-
scoring models is computationally underdetermined; for a given data 
set, available algorithms will not be able to decide between multiple 
regulatory structures. One reason for this is the aforementioned re-
quirement of large amounts of data. In most cases, the number of 
genes is usually several orders of magnitude higher than the number 
of measurements taken to sample the data. This problem is common-
ly approached by drawing on further assumptions or pre-established 
knowledge of regulatory systems in order to compare models and 
narrow down the solution space; models may be ‘filtered by mak-
ing plausible assumptions on the objectives of the underlying sys-
tem, such as economy of regulation (reflected by having the fewest 
edges that satisfy the conditions) or maximal biomass production’ 
(Albert 2007: 3332). Over-fitting the data with an excessively pow-
erful model is avoided by search algorithms that invoke a statistical 
form of Occam’s razor. These favor less complex models that effec-
tively predict limited ranges of data as opposed to highly complicated 
models that predict a wider range of data, but with lower accuracy 
(MacKay 1992). Such a process is supported by incorporating the be-
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lief that biological networks possess sparseness, meaning target genes 
can only be regulated by a limited number of transcription factors. 
By accounting for this and other properties such as scale-freeness, 
‘even an underdetermined system can be transformed into an over-
determined one’ (He et al. 2009: 200).

Authors attempt to give an even more accurate rendering of the 
actual network by integrating additional data about cell structures, 
such as analyses of gene location. These determine the DNA binding 
sites of proteins, providing physical evidence for regulatory relations 
between a gene that produces a given protein and those genes bound 
by the protein. Such information can be incorporated into model 
selection by selecting particular structure priors, or by giving no 
weight to models that fail to include edges required by location data. 
‘By fusing expression data with location data, the constrained search 
is able to consider statistical dependencies in the expression data that 
are consistent with the physical relationships already identified in the 
location data’ (Hartemink 2002: 448).12

As with the choice of model type, the decisions encountered by 
researchers in the model generation and selection stages are sensi-
tive to the general research context—the purposes of the researcher, 
the background knowledge available—and particular stage of model 
specification in which they arise. In generating candidate models, 
limitations in both computing power and the availability of experi-
mental data require different choices to be made with regard to the 
search-and-score heuristics employed and their attendant modeling 
assumptions. In the selection stage, the space of possible models is 
narrowed down by drawing on theoretical assumptions informed, 
once again, by background knowledge of constituent mechanisms 
and processes established by ‘nearby’ fields such as cell biology, mo-
lecular biology, and biophysics.

This multi-stage process shares an important feature with other 
cases in which inductive risk balancing figures heavily: due to the 
sorts of limitations that accompany the data and model generating 
process, different purposes may cause researchers to make decisions 
that result in different end models. Between two researchers who 
begin with the same data, one who is highly cautious about false 

12 Here we see a merging of top-down and bottom-up approaches.
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positives (say, because she is trying to figure out the functional role 
of a specific gene) will likely end up with a different graph than some-
one who is only interested in locating clustered ‘modules’ of genes 
that heavily regulate each other and interact much less with ‘out-
cluster’ genes. Of course this does not entail that two graphs that 
disagree on whether some set of nodes are connected are both cor-
rect; there is little reason to assume that actual regulatory relations 
fluctuate as much as researchers’ intentions. However, this serves to 
highlight the manner in which the data-heavy modeling of complex 
systems is accompanied by significant uncertainty: the definitive 
network structure, whatever it is, is buried beneath a compounding 
series of modeling assumptions, many of which enable researchers to 
gain traction in seeking reliable answers to certain questions while 
obscuring the answers to others. Often the most robust method for 
determining network structure as a whole involves finding effective 
ways to combine the results of multiple analyses—correlational, in-
formation theoretic, Bayesian probabilistic, and those based in dif-
ferential equations (Le Novère 2015).

4 The use of causal concepts

4.1 Deriving causal structure from a Bayesian network

It is standard practice for modelers of biological networks to inter-
pret directed graph edges as causal relations, where a given ‘parent’ 
node (at the origin of a directed edge) has a direct causal influence on 
its connected ‘children’. This is seen in publications with titles that 
mention ‘Bayesian inference for generating causal networks from ob-
servational biological data’ (Yu et al. 2004) and direct claims like 
‘The subgraph consisting of all directed edges constitutes the in-
ferred causal network’ (Opgen-Rhein and Strimmer 2007). Indeed, 
one of the main features that Friedman et al. cite as an advantage of 
Bayesian networks over correlational graphs is the idea that ‘Bayes-
ian networks provide models of causal influence’ (Friedman et al. 
2000: 602).

Bayesian networks are primarily used for the purpose of modeling 
causal relations. This is in part because they incorporate assumptions 
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that reflect certain intuitions about causality. The principle of d-sep-
aration is a prime example. A set of nodes Y is said to d-separate X 
from Z if and only if a node in Y intercepts every path from a node 
in X to a node in Z (Pearl 2000: 17). For example, if we take the 
chain graph (1) in Figure 2 to describe a causal network, then Y d-
separates, or ‘screens off’, the causal relation between X and Z; any 
change in the value of X that affects the value of Z must flow through 
Y, and so learning about the value of Y renders knowledge of X ir-
relevant to determining the value of Z. Y appears to be a more direct 
influence on Z, which mediates the influence of X. To use a concrete 
example, suppose that the air conditioning in a room is connected 
to a thermostat device that turns the A/C on when the thermostat 
reaches a value over xº, and that the A/C running makes the room 
become cool. In this case, if you notice that the A/C is running then 
finding out that the thermostat is over xº tells you nothing more about 
the room becoming cool. The air conditioning mediates the influ-
ence of the thermostat on the room’s temperature. In this way the 
interlinked conditional dependencies between the states of entities 
in our environment can be thought to reflect a structure of causal 
relations between them.

This relation between causal structure and conditional dependen-
cies is most clearly captured in an assumption called the Causal Mar-
kov condition or CMC (Spirtes et al. 1993). A concise definition of 
this assumption is given by Woodward (2003):

(CMC) For all Y distinct from X, if X does not cause Y, 	
then P(X|Parents(X)) = P(X|Parents(X) · Y)

In other words, the conditional independence relation in which the 
parents of a node d-separate it from all other predecessors is taken to 
be entailed by an underlying causal relation or lack thereof. Whether 
or not it is stated explicitly, researchers that understand the results 
of Bayesian network inference in causal terms must be taking this as-
sumption on board. Here Friedman et al. are unambiguous:

To learn about causality, we need to make several assumptions. The 
first assumption is a modeling assumption: we assume that the (un-
known) causal structure of the domain satisfies the Causal Markov 
Assumption. Thus we assume that causal networks can provide a rea-
sonable model of the domain [...] The second assumption is that there 
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are no latent or hidden variables that affect several of the observable 
variables (Friedman et al. 2000: 606).

Bayesian probabilities are typically understood in terms of an 
ideal epistemic agent’s degrees of belief in some state of affairs. The 
joint probability distribution represented by a Bayesian network can 
thus be thought of as a model for how an ideal agents’ beliefs about 
the states of components of a biological system should be interre-
lated. It is not clear that these networks license us to think that the 
system’s behavior is inherently probabilistic; they do not clearly war-
rant the further step of a realistic interpretation of probabilities. 
When paired with the CMC, however, researchers can construe the 
properties of the network to correspond to some structural features 
of the biological system; that is, the CMC implies that there is some 
overlap between the structure of the joint probability distribution, 
and the structure of the actual system, taken to be causal and capable 
of generating probabilistic relationships in the data.

It may not be necessary for modelers to interpret causality in 
terms of a full-blown metaphysical realism, but the notion that target 
systems bear a causal structure that network modeling aims to iden-
tify at least serves as a kind of representational ideal for the practice. 
In this way, the modeling techniques seen in network inference may 
be understood as employing what Michael Weisberg calls minimalist 
idealization, a practice with a representational ideal that ‘instructs 
the theorist to include in the model only the core or primary causal 
factors that give rise to the phenomenon of interest’ (Weisberg 2013: 
107). Levy and Bechtel likewise identify this ideal in network mod-
eling, noting that abstract graph theoretic diagrams often help in 
determining the contributions of causal organization to system-level 
behaviors. They write, ‘abstract models, such as models of connec-
tivity [...] highlight the features of that specific system that make a 
difference in it—namely, its pattern of internal causal connections’ 
(Levy and Bechtel 2013: 259).

The notion that cellular networks consist of an underlying struc-
ture of difference-making causes is seen to play a direct guiding role 
at one crucial stage of model selection for Bayesian networks. Re-
gardless of the supplementary edge-pruning assumptions borrowed 
from background knowledge, Bayesian network selection suffers 
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from an insurmountable form of underdetermination known as Mar-
kov equivalence. Markov equivalent networks share the same underly-
ing graph, but the direction of their edges may differ (Figure 3).

Figure 3: A set of Markov equivalent graphs.

Equipped only with observational data and Bayesian network infer-
ence, there is no principled reason on the basis of statistics to choose 
one of these graphs over the other. To a Bayesian algorithm, Markov 
equivalent networks are indistinguishable, which means the task of 
Bayesian network inference is best framed as a ‘search for an equiv-
alence class of networks that best matches [data] D’ (Friedman et 
al. 2000: 604). Note, for example, that in all four graphs pictured, 
conditioning on X renders Z and W independent, but the precise 
reasons for this, taking causal relations into account, differ in each 
case. No matter what search heuristic is used, they will be unable 
to find a unique causal model; this underdetermination is strictly 
mathematico-computational in the sense that it is built into the algo-
rithm of Bayesian network inference. Markowetz and Spang account 
for this as follows: 

Markov equivalence poses a theoretical limit on structure learning from 
data: even with infinitely many samples, we cannot resolve the struc-
tures in an equivalence class. In biological terms this means: even if we 
find two genes to be related it may not be clear which one is the regula-
tor and which one is the regulatee. Without perturbation experiments 
this situation cannot be further resolved (Markowetz and Spang 2007).

In other words, obtaining a better representation of the causal struc-
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ture of the system requires active intervention on the system.
There is a crucial connection between the CMC and the idea 

of intervention as a means of working around Markov equivalence. 
Friedman et al. comment:

A causal network models not only the distribution of the observations, 
but also the effects of interventions. If X causes Y, then manipulating 
the value of X affects the value of Y. On the other hand, if Y is a cause 
of X, then manipulating X will not affect Y. Thus, although X→Y and 
Y→X are equivalent Bayesian networks, they are not equivalent causal 
networks (Friedman et al. 2000: 606).

In effect, it is the interpretation of Bayesian networks as representa-
tions of underlying causal structure licensed by the CMC that en-
ables researchers to view statistically equivalent graphs as causally 
distinct; the directed edges of the network are taken to implicitly 
encode counterfactual information about the consequences of inter-
ventions on the system. Take, for instance, the graphs shown in Fig-
ure 3: if we interpret the directed edges to encode such information, 
then an intervention that only changes the value of Z will allow one 
to discern whether the bottom-right graph is the causal structure un-
derlying the data, in which case we expect the value of X to change 
as well. So suppose the value of Z is altered, and that this results in 
no change in the value of X. Then the bottom-right graph is elimi-
nated as a candidate for the underlying causal structure, whereas the 
remaining three must be narrowed down through interventions on 
other sites.

Markowetz and Spang (2007) cite studies showing that such ‘in-
terventions are critical for effective inference, particularly to estab-
lish directionality of the connections’ in biological systems. An ex-
ample of such an intervention in the context of regulatory networks 
is the use of gene knockout experiments. In one instance, Sachs et 
al. (2005) used small interfering RNA (siRNA) to target and silence 
the expression of a specific gene designated Erk in their regulatory 
network model. As indicated by the edges in Figure 4, their model 
predicted that this intervention would alter the expression of Akt 
but not PKA, and the result was seen to confirm these expectations, 
thereby validating the directionality of the edges inferred on the ba-
sis of prior data.
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Figure 4: Intervention on a gene regulatory network.

Bayesian networks are interpreted as bearing interventional informa-
tion on the basis of the CMC. Researchers employ interventions as a 
means of eliminating a subset of a group of equivalent graphs through 
the comparison of the results of interventions with those predicted 
by different causal structures. They can thus be seen to adopt a spe-
cific conception of causality, one that corresponds to the concept 
defended by Woodward:

(M) X causes Y iff there are background circumstances B such that if 
some (single) intervention that changes the value of X (and no other 
variable) were to occur in B, then Y or the probability distribution of Y 
would change (Woodward 2010: 290).

The meaning of ‘cause’ as it occurs in the antecedent of the CMC 
(see beginning of this section) is here elaborated in terms of shifts 
in the values of variables resulting from interventions on the sys-
tem. Researchers use interventional relations between the expres-
sion levels of genes as a central indicator of causal relations between 
them. This definition does not give a reduction of the concept of 
cause to interventional relations because the notion of intervention is 
not clearly shorn of causal implications. However, the definition cap-
tures a basic operational interpretation of causality that can be pro-
ductively employed in order to specify the structure of a given cell 
network. This interpretation is widespread in the literature on cel-
lular networks; authors regularly view graph models constructed on 
the basis of interventional techniques as implicitly containing ‘causal 
propositions that can be used to predict what is not yet known and 
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that can be tested by experiment’ (Peter and Davidson 2015: 265).
It’s worth dwelling on the extent to which models of gene regula-

tory networks conform to a Woodward-style causal interpretation. 
Take, for instance, the description given by Isabelle Peter and Eric 
Davidson, who describe network graphs as

literal representations of causal interactions among the regulatory genes in 
a network. These maps consist of the relevant regulatory genes (nodes or 
vertices), and they show explicitly the regulatory function these genes exe-
cute, i.e. they show for each gene how its outputs serve as inputs into other 
genes (linkages among genes, or “edges”) (Peter and Davidson 2015: 267).

The use of ‘literal’ should not be taken to imply that edges in regu-
latory network graphs simply refer to the presence of a continuous 
physical process connecting two genes. Rather, they indicate the fact 
that alterations in the expression behavior of one gene make a differ-
ence in that of another. Regarding these edges, Peter and Davidson 
note that ‘direct causal evidence is required to demonstrate the exis-
tence of a functional GRN [gene regulatory network] linkage’ (Peter 
and Davidson 2015: 45), where causal evidence is primarily arrived 
at through experimental perturbations to a system. Possible pertur-
bations include targeted gene mutations, knockouts, or expression 
silencing (as in the siRNA technique described above) that remove 
a transcription factor by which one regulatory gene affects another 
downstream. If the removal of a factor silences or otherwise alters 
the expression of a downstream gene, this constitutes ‘direct causal 
evidence’ of a relation between the two. Follow-up analyses, such as 
observing whether the factor in question is required at the site of the 
target gene in order for successful transcription to take place, can 
then be used to establish whether the causal relation between the 
relevant genes is direct (in which case a direct link between graph 
nodes is warranted) or indirect. Once again, interventions such as 
perturbations are held to be crucial in establishing the causal rela-
tions represented by the edges in a gene regulatory network model.

But researchers’ confidence in the use of perturbative interven-
tions for these purposes also reveals a deeper commitment to a con-
ception of causality that accords with Woodward 2003. There, caus-
al relations are subject to the further requirements of stability and 
modularity. Stability requires that the dependencies between nodes 
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in a graph are invariant under some range of changes in background 
conditions. Modularity, on the other hand, requires that the disrup-
tion or alteration of the causal relation between a pair of nodes in 
the graph does not result in a reorganization of the causal relations 
between other nodes. Confidence in the results of a perturbation 
analysis assumes both; if a given perturbation were believed to al-
ter background conditions in such a way that the causal relations 
between genes were significantly altered, either by changing their 
functional relationship (say, from exciting to repressing) or by trig-
gering a reorganization of network components, then there would be 
no reason to think that perturbation experiments could yield infor-
mation about the normal functioning of the network. Without stabil-
ity and modularity, each perturbation would potentially give rise to 
a completely different organization among regulatory genes, and the 
goal of inferring how genes interact in the absence of such perturba-
tions would be rendered nearly impossible for large networks.

4.2 Worries for those employing the interventionist framework

While the assumptions required to carry out causal modeling for cell 
networks are informed by biological background knowledge, they 
still carry the risk of glossing over important features of these sys-
tems. Perhaps more worrisome is the possibility that modelers are 
simply working with a deficient notion of ‘cause’, which causes them 
to systematically ignore relevant causal relations. In short, a num-
ber of theoretical and practical challenges confront this modeling 
paradigm, some of which have received significant attention within 
the philosophy of causality and philosophy of science. Although an 
attempt to fully respond to each issue is beyond the scope of this ar-
ticle, there are reasons to think that biologists are not misguided in 
their use of the above techniques and assumptions.

On the theoretical end, causal modelers are faced with stances 
critical of probabilistic causal theories as a whole. A number of phi-
losophers, most notably Nancy Cartwright (1993, 2002, 2007, and 
more) have denied that the Causal Markov Condition is necessary 
for inferring causal relations. Cartwright has presented two main 
cases that violate the CMC: one involving the probabilistic decay of 
one particle into a particle pair, another involving the probabilistic 
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production of by-products alongside the products of a chemical 
plant. Conditioning on the state of the particle or plant does not ren-
der the relation between the particle pair or chemical by-products 
statistically independent, despite the prior state’s role as their ap-
parent common cause. In the quantum case, this may be grounds 
for accepting that common notions of causal relations simply do not 
apply at the level of fundamental physics. This does not mean that 
such concepts are inapplicable or invalid at other scales such as those 
relevant to biological systems, just that they describe patterns that 
are not ‘fundamental’ or are not always found in certain lower-scale 
domains like quantum physics. The case of the chemical plant can 
then be considered independently. Without going into great detail, 
the argumentative success of this case can be seen to depend on 
the assumption that a finer-grained account of the production pro-
cess would not be capable of locating a component that successfully 
screens off the correlation between the products. This assumption 
is at the very least questionable, and the reader is referred to the 
exchange between Cartwright and Hausman and Woodward (1999, 
2004) for further details. For our current purposes, the important 
question is not whether the CMC is necessary to discover any and 
all causal relations, but whether it makes sense for modelers of gene 
regulatory networks to assume it, and this depends on whether it al-
lows researchers to reliably make predictions about and explain the 
behavior of the interaction systems under scrutiny. A definitive judg-
ment on this matter is premature, but the continued use of Bayesian 
networks among systems biologists suggests that the CMC continues 
to bear fruit, and so there is reason to believe it holds in the systems 
under study.

Even if the CMC is a necessary criterion for the discovery of caus-
al relations, it may fail to realistically apply as an assumption about 
the structure of cellular networks. In fact, there is a reason to think 
it is ill-applied. The CMC gives an interpretation of the directed 
acyclic graphs arrived at through Bayesian modeling algorithms, but 
cyclical interactions between components are incredibly common in 
regulatory networks; many include numerous network motifs such as 
feedback loops that help maintain the system in a steady state against 
external or internal perturbations (cf. Alon 2006). It is possible, 
however, to work around this issue. One way that the problem of 
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cyclical interactions can be addressed is through the use of temporal 
data, which provides measures of the expression rates of genes over 
time (He et al. 2009). These data can be used to construct dynamic 
Bayesian networks, where each node stands for an expression rate 
at a specified time. Cyclical interactions between genes will then 
be represented by a reversal of directed arrows between their cor-
responding nodes, where these nodes bear successive time stamps. 
In this way, cyclical interactions in the data can be ‘unfolded’ into 
acyclical graphs in a way that allows for the retention of the CMC 
and may even provide more detailed information such as the rates at 
which different processes feed back.

Another challenge for modelers working under this framework 
are possible violations of modularity. Sandra Mitchell (2008) has 
raised questions regarding the applicability of the modularity condi-
tion to biological networks, noting that they may be organized in 
such a way that, when the activity of a given component C is dis-
abled, alternate components are able to compensate for its absence 
and produce the same effect E that was originally attributed to the 
absent component. Such a self-reorganizing network would appear 
to violate the modularity condition, and thus the interventionist’s 
difference-making criterion for the claim that C causes E. Likewise, 
Markowetz and Spang (2007) cite compensatory network activity 
and uncertainty about the exact size of perturbation effects as obsta-
cles to Pearl’s notion of single-variable manipulation—a notion that 
closely resembles Woodward-style intervention. But again, these 
problems are not strictly insurmountable: Markowetz and Spang also 
note various techniques being developed to overcome such difficul-
ties, including what they call ‘soft interventions,’ analyses of gene 
knock-out data, and the reverse engineering of regulatory pathway 
structure through the observation of nesting patterns in the results 
of interventions.

Where interventions on single genes are unreliable or result in 
the sort of reorganization that Mitchell warns of, they may still be 
accurately approximated by adopting coarser-grained notions of 
modularity, that is, by shifting the level of description at which stable 
causal relations are found and allowing for perturbations that may af-
fect multiple genes. Researchers can detect particular sub-networks 
that are strongly connected, allowing for a distinction between 
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in-cluster (nodes that can influence the sub-network without being 
influenced by it) and out-cluster (the converse). ‘Nodes of each of 
these subsets tend to have a shared task; for example, in signal trans-
duction networks, the nodes of the in-cluster tend to be involved 
in ligand-receptor binding; the nodes of the strongly connected 
cluster form a central signaling subnetwork; and the nodes of the 
out-cluster are responsible for the transcription of target genes and 
for phenotypic changes’ (Albert 2007: 3332). Building on this ap-
proach, Bansal et al. claim that Bayesian network inference is useful 
for ‘identifying functional modules, that is, identifying the subset of 
genes that regulate each other with multiple (indirect) interactions, 
but have few regulations to other genes outside the subset’ and for 
‘predicting the behavior of the system following perturbations [say, 
through gene knock-outs or altering expression levels], that is, gene 
network models can be used to predict the response of a network to 
an external perturbation and to identify the genes directly “hit” by 
the perturbation’ (Bansal et al. 2007: 1). A greater degree of invari-
ance to intervention is therefore likely to be found in the relations 
between functional modules, permitting more robust predictions of 
perturbation effects. In this way, there is a close connection between 
talk of functional modules among gene network scientists and a sys-
tem’s possessing modularity in Woodward’s sense.

Just as with the CMC, Cartwright has argued against interven-
tionist claims that the concept of causal relations requires modularity 
(see her 2007: ch. 7). For our purposes, the matter is once again not 
whether modularity applies in all cases of causal inquiry, but whether 
its assumption yields reliable information about the relevant target 
systems. In practice, researchers appear comfortable with the risks of 
assuming a substantial degree of modularity. For some, such as Peter 
and Davidson (2015), invocations of modules are part of the basic de-
scription of gene regulatory network structure. According to them, 
the expression of individual genes is controlled by sequences residing 
on the same DNA molecule. These ‘cis-regulatory modules’ interact 
with transcription factors to define the conditions under which a giv-
en gene is expressed. They do so by acting, for example, as cofactors 
that determine where in the developmental plan the transcription of 
a gene is initiated, or by isolating it from other regulatory domains 
and preventing it from being transcribed when certain other genes 
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are active. The specificity of transcriptional control due to cis-reg-
ulatory modules serves to insulate genes from influence by factors 
other than those that commonly affect them, lending gene regula-
tory networks a higher degree of modularity than would be expected 
otherwise. The authors then specify a further level of modularity 
in these networks due to the presence of ‘subcircuits’. These, like 
the ‘network motifs’ and ‘functional modules’ referenced earlier, are 
highly recurrent patterns of connections between regulatory genes, 
such as feed-back loops, which serve to coordinate the joint expres-
sion of several genes in a way that carries out a distinct function. 
Peter and Davidson elaborate: ‘A given developmental GRN will in-
clude several separate subcircuits joined by encoded regulatory link-
ages. Thus, considered from the perspective of the structural ele-
ments that perform its overall control functions, the developmental 
GRN has a modular character’ (Peter and Davidson 2015: 44). If 
we assume that the large numbers of interactions among sub-circuit 
elements and sparser interactions between separate sub-circuits pro-
tects sub-circuit interactions from being affected by perturbations 
of individual sub-circuit components, then this ‘modular character’ 
instantiates causal modularity between the network sub-circuits.

5 Multi-stage model specification in systems biology and beyond

I hope to have shown that the practice of modeling cellular networks 
using Bayesian inference techniques is guided by a notion of underly-
ing causal structure that corresponds to a Woodward-style interven-
tionist conception of causality. How, then, should we characterize 
the role causal concepts have played in this process of model speci-
fication? Recall that model specification is a procedure by which re-
searchers arrive at a satisfactory amount of detail in their representa-
tion of some phenomenon of interest or its underlying structure. In 
the case of cellular networks, we have seen how certain levels of de-
tail may be obscured on the basis of model underdetermination; for 
example, if a given strategy is unable to specify whether arrows be-
tween nodes are directed one way or another, then the most accurate 
representation available will have to leave this feature undetermined. 
Figure 5 shows a schematic depiction of the role of causal concepts in 
model specification, which involves overcoming the stages of under-
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determination discussed above. Here model specification is achieved 
through the incorporation of compounding background theoretical 
assumptions which aid in the elaboration of a particular notion of 
underlying causal structure.

Figure 5: Causal concepts in network model specification.

This graphic helps show how it is the notion of underlying causal 
structure that helps guide the process. Otherwise it becomes hard 
to make sense of the idea that a model is underdetermined. That 
is, we can always ask ‘underdetermined with respect to what?’ Co-
expression networks account for the data as well as other networks, 
in the sense that they are constructed through the direct incorpora-
tion of the available measurements. It is only because researchers, 
motivated by their understanding of the relevant biological systems, 
posit a more fine-grained structure, one resembling a network of 
Woodward-style causal relations, that such correlation networks 
are viewed as insufficient. A supposition of causal regulatory struc-
ture thus guides the development of strategies to represent ‘deeper’ 
structures in the same data, supplemented with further assumptions 
and, eventually, interventional results.

In this way the modeling practice of researchers of cellular net-
works in systems biology can be seen to involve the multi-stage spec-
ification of an adequate representation of its subject matter. Model 
specification is achieved through a compounding series of theoreti-
cal and modeling assumptions, which serve to elaborate and refine 
an informational structure designed to produce reliable predictions 
with respect to some phenomenon of interest. In reviewing the fea-
tures of this practice, I seek to describe them with enough generality 
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that they may be recognized in other areas of science, as I believe 
they can be.

Researchers begin with the most widely adopted modeling as-
sumption to aid in simplifying impending computational tasks (e.g., 
measurements of transcription factors have a functional relation-
ship to gene expression; co-expression is a reliable indicator of pos-
sible regulatory interactions between genes). This is followed by the 
choice of specific mathematical objects (e.g., graphs of condition-
ally dependent data points), which pick out, from the available ways 
of inquiring into the system under study, a specific informational 
structure that is relevant to researchers’ aims (e.g., such graphs bet-
ter predict downstream results of gene knock-outs). More detailed 
features of these mathematical objects and their sub-components are 
then specified, again with reference to the aims of research, with 
trade-offs being made by researchers based on the particular prob-
lem-solving context in which the modeling effort takes place (e.g., 
a binomial form for probability distributions is more computation-
ally efficient than multinomial distributions, but may fail to reliably 
represent regulatory feedback loops; a search heuristic that penalizes 
high-scoring graphs for complexity or for over-fitting of data risks 
rejecting accurate models of highly involved networks).13

These stages are accompanied by a form of computational oppor-
tunism, in which concerns about finding ‘one true representation’ 
may be overshadowed by an interest in selecting from a menagerie of 
tweaks and variations on model sub-components suited to serve dif-
ferent purposes. Such strategies are also seen to be rooted in a local 
domain of inquiry embedded within a collection of ongoing periph-
eral research programs. This embedding in a local domain provides 
crucial contextual features that orient scientific problem-solving in 
the form of established empirical facts that justify basic modeling as-
sumptions. It also provides peripheral research programs and sourc-
es of background theory for modelers to draw on and refine their 
results (e.g., incorporating gene location data into search heuristics). 

Finally, the use of concepts relevant to the formulation and execu-
tion of strategies is seen to be highly purpose-driven, and is in many 

13 For another account of multi-stage model construction, instead from the 
perspective of ‘bottom-up’ systems biologists, see MacLeod and Nersessian 2013.
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ways a function of the modeling context. The interventionist notion 
of causation proves to be a highly useful means to further specifying 
regulatory network structures, as it gives researchers a way to dif-
ferentiate statistically indistinguishable graphs. This notion of causa-
tion also plays something of a guiding role for modelers: without it, 
it is hard to make sense of the idea that a model is underdetermined. 
That is, it is because researchers posit a more fine-grained struc-
ture—one that may be approximated by a system of Woodward-
style causal relations—and because they seek the kind of inferential 
reliability that such a structure brings, that representations such as 
co-expression networks are viewed as insufficient depictions of the 
sources of experimental data.

By paying attention to these features of the model specification 
process—the stages of decision-making, the research context, the 
driving concepts—we gain a better understanding of scientific mod-
eling practices. In addition, it allows us to see how the inductive risks 
that accompany various assumptions can be localized and at times 
individually examined, rather than attributed wholesale, say, to the 
finished product or to the very act of inductive inference.14
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