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Abstract
Systems medicine is a promising new paradigm for discovering associa-
tions, causal relationships and mechanisms in medicine. But it faces some 
tough challenges that arise from the use of big data: in particular, the 
problem of how to integrate evidence and the problem of how to struc-
ture the development of models. I argue that objective Bayesian models 
offer one way of tackling the evidence integration problem. I also offer a 
general methodology for structuring the development of models, within 
which the objective Bayesian approach fits rather naturally.
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Systems medicine applies systems approaches, analogous to those 
used in systems biology, with the aim of improving medical treat-
ment and progressing medical science. These approaches are often 
described as ‘data-intensive’ or ‘data-driven’ because they attempt to 
draw inferences from a variety of large datasets. This paper explores 
two problems that face systems medicine. First, there is the problem 
of diversity of evidence: in addition to large amounts of data (‘big 
data’), the available evidence tends also to be very heterogeneous, 
and the question arises as to how the whole range of evidence can be 
integrated in a coherent manner, to enable reliable inferences. The 
second problem is that of diversity of models: systems medicine em-
ploys different models for different purposes, and it is often far from 
clear as to how these models relate to one another. Can anything be 
done to shed light on the relationships between models?

This paper develops a normative response to these problems. 
It puts forward an approach based on Bayesian epistemology for 
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integrating multiple datasets. It then puts forward a way to integrate 
evidence of mechanisms, which can often be qualitative, into the 
resulting quantitative models. (This approach can be thought of as 
a contribution to the EBM+ programme, which seeks ways of in-
tegrating evidence of mechanisms with evidence of associations in 
order to lead to better outcomes in medicine—see ebmplus.org.) 
The paper goes on to suggest that Bayesian networks can provide a 
unified modelling formalism. (This conclusion, if not the detail of 
the approach, is in line with that of Landes et al. (2018), who present 
a Bayesian network modelling framework for inference in pharma-
cology.) There is no claim that the framework developed here is the 
only way to tackle the foundational problems that face systems medi-
cine, but it is hoped that the present attempt will encourage others 
to tackle these problems.

The paper is structured as follows. §1 introduces systems medi-
cine and notes that its appeal to a wide variety of data makes it a 
promising new paradigm for medical research. However, progress in 
systems medicine has not been as rapid as some have anticipated. In 
§2 it is suggested that this slow progress might be explained by the 
enormity of the challenges faced by systems medicine. Two challeng-
es stand out as particularly pressing: how should the massive amount 
of evidence in systems medicine be integrated? how should one go 
about modelling in systems medicine? In §3 I classify models in sys-
tems medicine as being of four kinds: quantitative models of associa-
tion; quantitative causal models; qualitative mechanistic models; and 
quantitative mechanistic models. In §4 I show how objective Bayesian 
epistemology can be applied to data integration and how an objective 
Bayesian net can be used as an association model. In §5 I then sketch 
a principled way of generating a causal model, and of structuring the 
development of models in systems medicine in general.

1 Systems medicine

Systems medicine and systems biology. Systems medicine is an approach to 
medicine that has emerged only in the last few years. Systems medi-
cine is closely related to systems biology, which studies biological 
systems holistically. Typically, systems of molecules and their inter-
actions within the cell are the primary objects of study of systems bi-
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ology, and its main aim is to discover new biological mechanisms (see 
Boogerd et al. 2007, e.g., §1.4.4). One characteristic of the systems 
approach is the use of data-intensive functional genomics techniques: 
e.g., transcriptomics, metabolomics and proteomics.

Systems medicine applies systems biology to medicine. While it 
retains the data-driven approach to discovery that is a feature of sys-
tems biology, there are some important difference between systems 
medicine and systems biology.

First, systems medicine inherits from medicine a practical goal—
diagnosis, prognosis and treatment—in addition to the theoretical 
goal of discovering pathophysiological mechanisms (Kyriakopoulou 
and Mulligan 2010: 3). This practical goal means that, in systems 
medicine, causal discovery is as important as—if not more impor-
tant than—mechanism discovery. (This is because, as we shall see in 
§3, causal models are more directly applicable to these practical ends 
than are mechanistic models.)

Second, the data to which systems medicine appeals is perhaps 
more diverse still than that considered by systems biology, because it 
includes, in addition to sub-cellular molecular data, higher-level clini-
cal variables (e.g., size of tumour, sex of patient) and environmental 
features (describing, e.g., the origin of disease). Moreover, some re-
searchers involved in systems medicine hope to make use of character-
istics collected by personal health and fitness apps—such as number 
of steps walked in a day, weight and blood pressure—as well as entire 
medical histories collected by hospital and primary care IT systems. It 
is therefore clear that ‘big data’ plays an important role in systems med-
icine. Furthermore, the causal discovery process also depends heavily 
on information about mechanisms, including social and environmental 
mechanisms in addition to the underlying physiological mechanisms 
and their malfunctioning variants. Evidence of mechanisms aids causal 
discovery in a variety of ways. For example, it helps to determine the 
direction of causation and to identify causal intermediaries. More-
over, because systems medicine appeals to data at different levels of 
scale—ranging from the level of the genome to the level of popula-
tions—many of the variables in these datasets are related constitutively 
rather than causally (Craver 2007). Evidence of mechanisms can help 
to determine which associations in the data are attributable to causal 
relationships and which are attributable to constitutive relationships.
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Systems medicine seems to have emerged as a distinct field around 
2009. Diseases tackled by large systems medicine research projects 
include AIDS, atherosclerosis, cervical cancer, chronic inflamma-
tory bowel disease, colorectal cancer, fascitis, liver cancer, lung dis-
ease, malaria, motor neurone degeneration, multiple sclerosis and 
tuberculosis.

This paper focusses on modelling in systems medicine. For dis-
cussions of modelling and the problem of model integration in sys-
tems biology, see O’Malley and Soyer 2012, Brigandt 2013, Green 
2013, and MacLeod and Nersessian 2013.

The promise of systems medicine. Systems medicine is considered to be 
an exciting new paradigm for medicine, largely on account of its 
data-driven methodology. The use of massive amounts of data prom-
ises more robust conclusions, with fewer conclusions attributable to 
artefacts of the data and a larger proportion attributable to genuine 
connections in the sampled population. The use of big data also of-
fers the hope of increased personalisation, with so many data points 
that one will be able to discover causal relationships that obtain in 
small subpopulations, which might otherwise be washed out in the 
population as a whole. This increased personalisation, in turn, offers 
the prospect of better-targeted treatments: treatments targeted at 
small subpopulations or even particular individuals, rather than at 
the population as a whole. Furthermore, the datasets that drive sys-
tems medicine often measure very large numbers of variables. This 
ability to consider so many factors at once gives systems medicine 
the potential to discover more complex pathophysiological mecha-
nisms than would be discoverable by more focussed studies which 
concentrate only on a putative cause and effect and a few potential 
confounding variables.

Systems medicine clearly offers a range of opportunities. This has 
led some of its proponents to predict that the systems approach will 
quickly induce a revolution in medicine. (These bold predictions are 
reminiscent of those made in the early years of artificial intelligence 
research.) Systems medicine has been called ‘P4 Medicine’ in the 
sense that it is predictive, preventative, personalised and participa-
tory, and many ambitious claims centre round this combination of 
roles. For example:
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the entire healthcare industry (from pharmaceutical companies to 
healthcare providers, insurance companies and medical diagnostic lab-
oratories, etc.) will also have to transform in the years to come, possi-
bly favoring the creation of global strategic alliances between academ-
ics, industry and administrations in order to facilitate and catalyze the 
arrival and development of P4 Medicine. (Sobradillo et al. 2011: 39)

We stand at the brink of a fundamental change in how medicine will 
be practiced. Over the next 5–20 years medicine will move from be-
ing largely reactive to being predictive, personalized, preventive and 
participatory (P4). Technology and new scientific strategies have al-
ways been the drivers of revolutions and this is certainly the case for 
P4 medicine, where a systems approach to disease, new and emerging 
technologies and powerful computational tools will open new win-
dows for the investigation of disease. Systems approaches are driving 
the emergence of fascinating new technologies that will permit billions 
of measurements on each individual patient. ... We predict that emerg-
ing technologies, together with the systems approaches to diagnosis, 
therapy and prevention will lead to a down turn in the escalating costs 
of healthcare. In time we will be able to export P4 medicine to the 
developing world and it will become the foundation of global medicine. 
The “democratization” of healthcare will come from P4 medicine. ... 
It is evident that the business plans of every sector of the healthcare 
industry will need to be entirely transformed over the next 10 years 
(Galas and Hood 2009: 1)

While some of these claims may be true, the pace of change isn’t as 
rapid as we might be led to believe. This 10-year milestone is soon 
upon us and as yet there remain relatively few large-scale systems 
medicine research projects, let alone drastic repercussions on health 
care in general. To give a sense of the scale of current research, in 
2015 the EU allocated roughly 36 million euros to fund around 
six new projects specifically in the area of systems medicine; this 
amounts to only about 3% of the 2014–15 budget allocated to the 
‘health, demographic change and wellbeing’, which is itself only one 
of the streams of EU funding for health research.
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2 Challenges for systems medicine

Why is the promise of systems medicine not being realised as quickly 
as some have anticipated?

One reason, explored in detail by Carusi (2014), is that it can be 
challenging to validate models in the interdisciplinary setting of a 
large systems medicine project, because team members may disagree 
as to what counts as validation.

A second reason is simply that it is hard to handle big data. The 
systems approach demands a lot in terms of consistency of measure-
ment over time and between health authorities distributed across a 
continent or even across the globe. Big data also make big demands in 
terms of computational complexity. Most algorithms for construct-
ing a model from a dataset require computational resources that in-
crease non-linearly with respect to the number of variables measured 
in the dataset. When the dataset measures several thousand vari-
ables, as can be the case with molecular-level measurements, even a 
quadratic-time algorithm can be computationally infeasible. Because 
of this issue of computational complexity, the systems approach is 
often forced to make a large number of simplifying assumptions, to 
bring the complexity down to manageable proportions. These sim-
plifications can work against some of the advantages of the big-data 
approach. It is not obvious that big data together with simplifying 
assumptions will necessarily lead to more robust conclusions than 
using smaller datasets while avoiding over-simplifications.

A third—and perhaps the biggest—challenge facing systems 
medicine is that of data integration. How should the various datasets 
and other sorts of evidence combine to yield an over-arching model 
or set of models? Vandamme et al. (2013) introduce this challenge 
as follows:

the technologies to get large amounts and different types of data will 
soon be affordable and readily available in the clinic. But what are we go-
ing to do with these long lists of data? Taking all this data into account, 
and integrating it, is not a trivial task when taking decisions in the daily 
practice. The sheer volume of data necessitates multidisciplinary inter-
action; a general practitioner cannot make diagnostic and therapeutic 
decisions based on hundreds of thousands of data points of -omics data 
by integrating it in his or her head, they require support of experts from 
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other fields. The development of mathematical and information science 
tools has opened up possibilities to mine these large sets of data, to post-
process them and to reduce the noise in the data. ... There is a need for 
flexible, integrative systems approaches to combine such -omics data 
with clinical, societal and environmental factors including sex, type of 
work, sleep and eat habits, etc. (Vandamme et al. 2013: 892–3)

The current approach to data integration in systems medicine of-
ten proceeds as follows (see, e.g., Lefaudeux 2014). First, each da-
taset yields a ‘fingerprint’. This is a model that gives an indication 
of the connections amongst the variables in that particular dataset. 
For example, a systems medicine project might produce a finger-
print model for each of the following sorts of data: metabolomic, 
proteomic, transcriptomic and clinical data, and patient-reported 
outcomes. Moreover, it is typical for most of these kinds of data to 
be collected both in animals (e.g., mice) as well as in humans. Ten 
datasets, then, would generate ten fingerprint models. Next, one or 
more models, involving the whole range of variables under consider-
ation, are constructed that best fit all these fingerprint models: these 
are sometimes called ‘handprint’ models.

There are a number of difficulties with this process. First, there is 
no consensus as to how to generate a handprint model from a collec-
tion of fingerprint models. This tends to be done on a case-by-case 
basis, for example by putting the fingerprint models into a single 
representational scheme—e.g., Systems Biology Graphical Notation 
(Novere et al. 2009)—and using ingenuity to paper over the cracks 
which arise where the fingerprints are inconsistent. Given the scale 
of systems medicine projects, what is needed is a normative approach 
to data integration which can be applied in a systematic way, rather 
than ad hoc methods that appeal to intuitions which can sometimes 
be flawed.

The second difficulty is that a systems medicine project might 
aim to generate several different handprint models, using different 
modelling technologies and with different goals in mind for each 
model. There is a need to clarify the relationships amongst the mod-
els and to develop a normative approach to evidence integration for 
each substantially different kind of handprint model.

Third, there is a tendency—no doubt inherited from the pro-
tocols for evaluating evidence produced by the evidence-based 
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medicine (EBM) movement (Clarke et al. 2013)—to think that the 
evidence to be integrated is entirely constituted by the datasets that 
have been collected: i.e., to think that, if it’s not a dataset then it’s not 
evidence. Thus the methodology is roughly:

datasets → fingerprint models → handprint models

The upshot is that important evidence which does not take the form 
of datasets tends to get sidelined or to be treated implicitly. While 
the data indeed constitute the bulk of the evidence required to ascer-
tain the correlations that obtain between the variables of interest, evi-
dence of the underlying mechanisms often comes from sources other 
than datasets, including searches of the physiological literature; past 
studies; individual case reports; biomedical imaging; autopsies; sim-
ulations; and the physiological knowledge of domain experts (Clarke 
et al. 2014a). The standard approach has hitherto involved a mixture 
of ignoring some such evidence and using intuition and experience 
to ensure that other such evidence constrains the handprint mod-
els in an appropriate way. While this sort of approach may work 
quite well in small medical studies, it is problematic in the systems 
medicine paradigm because there is simply too much of this sort of 
mechanistic evidence to simply eyeball it all and treat it intuitively. 
All the relevant evidence needs to be made explicit and integrated in 
a systematic way.

Of course, this is a big ask. These challenges are not going to be 
easy to meet, and this difficulty might explain why systems medicine 
is likely to develop at a slower pace than some have anticipated. Nev-
ertheless, I shall suggest that we can make some useful inroads into 
these challenges, in the hope that systems medicine might eventually 
be put on a stronger footing.

3 Kinds of handprint model

A first step towards clarifying the role that models play in systems 
medicine is to distinguish different kinds of model. Broadly speak-
ing, four kinds of model are routinely employed in systems medicine: 
(I) association models, which are normally quantitative; (II) causal 
models, which are also normally quantitative; (III) qualitative mech-
anistic models; and (IV) quantitative mechanistic models.



437Models in Systems Medicine

I. Association Models. Association models are used to capture the ex-
tent to which variables measured in the datasets are predictive of one 
another, or of a particular target variable, such as severity of disease. 
Such a model can provide answers to questions such as: what are the 
main predictive factors of disease severity? If the patient exhibits fac-
tors X, how likely is a severe outcome?

In order to be used for accurate prediction, an association model 
needs to include the variables that are most correlated (with each 
other or, respectively, with the target variable). In essence this is the 
easiest of the four kinds of model to construct, because it suffices 
to capture the probability distribution over the variables included 
in the model. In practice, however, it is almost never the case that 
all variables in the handprint model are measured in the same data-
set. Rather, each dataset measures a subset of the variables of inter-
est, and there will normally be relatively few variables measured by 
more than one dataset. Therefore, while each dataset can be used to 
provide an estimate of the marginal distribution of those variables 
measured by that dataset, these marginal distributions constrain—
rather than fully determine—the joint probability distribution over 
the whole set of variables in the handprint model. The key task is 
thus to determine and represent an appropriate joint probability dis-
tribution, from all those that satisfy the constraints imposed by the 
marginal distributions that are determined by the datasets and rep-
resented by the fingerprint models.

The qualitative relationships in an association model might be de-
picted as in Fig. 1. In this kind of undirected graph, sometimes called 
a Markov network, the links represent correlations, and if, for sets X, 
Y, Z of variables, Z separates X from Y, then Z renders X and Y proba-
bilistically independent, written X ⊥ Y | Z . In Fig. 1, for instance, 
S separates M1 and M2 from T2, so the graph implies that {M1, M2} is 
probabilistically independent of T2 conditional on S.

A Markov network is just one kind of probabilistic model. While 
association models are typically probabilistic, non-probabilistic asso-
ciation models, such as neural networks, also have advocates.
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Figure 1: Qualitative representation of association relationships involv-
ing metabolic variables Mi, transcriptomic Ti, proteomic Pi, clinical Ci, 
patient-reported outcome Oi, severity of disease S.

Figure 2: Qualitative representation of causal relationships involving 
metabolic variables Mi, transcriptomic Ti, proteomic Pi, clinical Ci, pa-
tient-reported outcome Oi, severity of disease S.

II. Causal Models. Causal models are similar to association models in 
that they model relationships between variables, including statistical 
associations, and can be used for prediction. In contrast to associa-
tion models, however, causal models also distinguish causes from ef-
fects, usually representing causal connections graphically by means 
of directed acyclic graphs (DAGs) such as that depicted in Fig. 2. 
By explicitly representing causal relationships, causal models can be 
used to predict the effects of interventions: intervening to change 
the value of a variable will only induce further changes to those other 
variables in the network that are its effects, so the cause-effect rela-
tionship needs to be explicitly modelled in order to reason about in-
terventions. Causal models thus go further than association models, 
in that they can be used to decide how best to control (i.e., intervene 
upon) variables, as well as to predict the values of certain variables 
when the values of other variables are observed. One increasingly 
common type of causal model is the causal Bayesian net (CBN), 
which consists of a directed acyclic graph that represents a network 
of causal relationships, together with the probability distribution of 
each variable conditional on its direct causes (Pearl 1988, 2000).

Causal models are also used for explanation: the value that one 
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variable is observed to take may be explained in terms of the fact that 
its causes take certain values which make the observed value of the 
effect in question more probable. This sort of explanation may be 
thought of a schematic abstraction of a much more nuanced explana-
tion that describes how the underlying physiological and/or social 
mechanisms are responsible for the phenomenon in question.

III. Qualitative Mechanistic Models. Mechanisms may be understood in a 
broad sense to include physical processes (Salmon 1984, Dowe 2000) 
as well as complex- systems mechanisms, i.e., entities and activities 
organised in such a way as to be responsible for some phenomenon to 
be explained (Machamer et al. 2000, Illari and Williamson 2012). In 
order to properly explain some observed phenomenon, we normally 
seek to describe the mechanisms that give rise to the phenomenon. 
For example, the progress of a disease might be explained in terms 
of the environmental and social processes that trigger the disease, as 
well as failures of the physiological mechanisms that usually protect 
the body from the disease, the physiological mechanisms that allow 
the disease to progress, and the processes of degeneration that ac-
company the disease. The mechanisms involved will often be hier-
archically structured, involving components at the levels of society, 
the body, the organ, the cell, and the gene, for instance, with lower 
levels explaining or constituting some of the features at higher levels. 
Also, mechanistic explanations will typically appeal heavily to the 
organisation of the entities and activities involved, particularly their 
spatio-temporal organisation. These hierarchical and organisational 
features—which causal models tend to abstract away from—are ex-
plicitly represented in mechanistic models (Williamson 2013a).

Qualitative mechanistic models often take the form of diagrams 
which can encapsulate these kinds of feature—see Fig. 3 for exam-
ple, in which hierarchical structure and spatio-temporal organisation 
is clearly important.

IV. Quantitative Mechanistic Models. While a diagram is often an excel-
lent description of the salient ingredients of a mechanistic explana-
tion, a purely qualitative model of this form cannot fully explain why 
variables of interest take certain specific values—e.g., why did the 
disease progress for 10 years as opposed to 5 or less? In order to an-
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swer such questions, we need to introduce quantities into the model. 
Causal models are typically quantitative and can be used to answer 
questions such as this. However, as noted above, causal models ex-
plain by identifying only the key causal variables—milestones on the 
pathways to the effect to be explained. Sometimes such explanations 
are too superficial and a fuller description of the underlying mecha-
nisms needs to be given. In such a case, a qualitative mechanistic 
model can be augmented with functional relationships which deter-
mine some of the quantities of interest in the mechanism in terms 
of others. This yields a quantitative mechanistic model. Such a mod-
el might, for example, take the form of a picture of the qualitative 
structure of the mechanism together with a system of differential 
equations linking key quantities. A second example of a quantitative 
mechanistic model is a recursive Bayesian net (RBN), which models 
a mechanism using a hierarchical array of causal Bayesian nets (Ca-
sini et al. 2011, Clarke et al. 2014b).

Figure 3: T cell effector mechanisms in a lung infected by influenza A 
virus (Gruta and Turner 2014).
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Another kind of mechanistic model is an agent-based model, which 
explains behaviour in terms of interactions between similar compo-
nents, using simulations. Such models are often qualitative but can 
be quantitative.

*

The four kinds of model are summarised in Table 1. Of these four 
kinds of model, the quantitative mechanistic model contains the most 
information and thus it is the hardest kind of model to obtain reliably. 
For this reason, a large-scale systems medicine project may aim to 
build several or all of these four kinds of model, rather than simply 
rely upon a quantitative mechanistic model (Wilde and Williamson 
2016). For instance, for prediction it can make much more sense 
to use an association model rather than a quantitative mechanistic 
model, because the latter kind of model will typically be far more 
speculative than the former kind of model, especially when evidence 
is limited—e.g., when evidence consists purely of datasets that re-
cord the values of the associated variables. Similarly, given limited 
evidence, a causal model will normally be more reliable than a quan-
titative mechanistic model for predicting the effects of interventions. 
On the other hand, a quantitative mechanistic model is the only op-
tion when certain observed quantities need to be explained in depth.

We see, then, that by classifying them according to kind of model 
we can begin to make sense of the array of models that are gener-
ated by systems medicine projects. There are four natural kinds of 
model, each of which has characteristic uses and can be used to an-
swer distinctive questions. In §5 we shall return to the challenge of 
how to structure the development of models in systems medicine. 
In the meantime, we turn to the other key challenge facing systems 
medicine, that of evidence integration.



Jon Williamson442

       Kind of model    Kinds of question it can answer

I.     Association     Which factors are the main predictors of brain damage
                                severity?
                                If the patient exhibits factors X, how likely is a severe
                                outcome?
II.    Causal             What are the main causes of brain damage?
                                If we intervene with drug X, how will that change the
                                probability of a severe outcome?
III.   Qualitative     What explains the fact that inflammation is a cause of 
        Mechanistic    brain damage?
                                What explains the fact that protein X is predictive of a
                                severe outcome?
IV.    Quantitative   What explains the fact that gestational term is a better
         Mechanistic    predictive factor of brain damage than MRI feature X is?
                                What explains the fact that hypoxia doubles the chance of
                                biomarker X?

Table 1: Kinds of handprint model used in systems medicine.

4 Objective Bayesian nets as association models

Let us consider perhaps the main challenge facing systems medicine, 
namely that of evidence integration: how can one construct hand-
print models which take all the evidence into account? The stan-
dard paradigm in machine learning is to produce algorithms for 
constructing an association model or a causal model from a single, 
high-quality dataset. However, in systems medicine one is typically 
faced with many datasets, each pair of which may measure relatively 
few variables in common. In addition, there is evidence of the un-
derlying mechanisms to take into account. How can handprint mod-
els take all this evidence into account? This section will develop a 
principled way of generating an association model from a range of 
datasets. In the next section we shall turn to the task of constructing 
a causal model which also takes mechanistic evidence into account.

Objective Bayesian Epistemology. The procedure for generating a hand-
print association model that we shall advocate in this section is mo-
tivated by a philosophical theory of strength of belief, namely objec-
tive Bayesian epistemology (OBE). Here we outline the version of 
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OBE developed in Williamson (2010).
According to OBE, the strengths of our beliefs should satisfy 

three norms.
The Probability norm says that degrees of belief should be prob-

abilities—i.e., numbers in the unit interval [0, 1] such that the 
strength to which one believes a disjunction of disjoint propositions 
equals the sum of the strengths to which one believes the individual 
propositions. Thus, the strengths of one’s beliefs should be captured 
by some function P in the set ℙ of all probability functions.

The Calibration norm says that degrees of belief should be cali-
brated to evidence. In particular, degrees of belief should be cali-
brated to physical chances, insofar as one has evidence of them: if it 
is reasonable to infer from empirical data that the chance function P* 
is in some convex subset ℙ* of probability functions then one’s belief 
function P also ought to lie in that set. Not all evidence is evidence 
about chances, and, more generally, the Calibration norm says that 
evidence will constrain P to lie in some subset 𝔼 of probability func-
tions that are calibrated to evidence.

The third norm—the Equivocation norm—says that, insofar as 
the choice of belief function P is not fully determined by the previ-
ous two norms, one’s belief function should equivocate sufficiently 
between the most fine-grained possibilities that one can express: P  
should be a function in 𝔼 that is sufficiently close to the equivocator 
function P= which gives each basic possibility the same probability. 
Here we shall assume that there is a finite partition Ω of basic pos-
sibilities (most fine-grained possibilities that one can express) and we 
shall adopt the usual measure of distance between probability func-
tions, Kullback-Leibler divergence (KL-divergence):

d(P,Q ) = S P(w) log P(w)
	 	 	 										

w∈Ω
 Q (w)

      

       

for probability functions P and Q defined on Ω. If there is a function 
in 𝔼 that is closest to the equivocator function P= then OBE will 
normally suggest that one should adopt that function. Equivalently, 
one’s belief function P should be the probability function in 𝔼 that has 
maximum entropy:
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H(P) = – S P(w) log P(w).
	 	 	 										

w∈Ω
 

This maximum entropy principle was originally put forward by Jaynes (1957).
To visualise the norms of OBE, suppose there are three basic pos-

sibilities Ω = {ω1, ω2, ω3} and consider Fig. 4. The simplex ℙ of all 
probability functions consists of the triangle linking the basic pos-
sibilities, together with its interior. A vertex of this triangle is the 
probability function that gives probability 1 to the corresponding 
basic possibility and probability 0 to the other two basic possibili-
ties; edges contain the probability functions that give probability 0 
to the basic possibility at the opposite vertex; interior points give 
non-zero probability to all three possibilities. The Probability norm 
says that P should lie in this triangle. The Calibration norm says that 
evidence eliminates all but some subset 𝔼 of probability functions, 
and P should lie in this set. The Equivocation norm says that P should 
otherwise be closest to the equivocator function P= which gives prob-
ability 1/3 to each basic possibility.

The three norms of objective Bayesianism can be motivated in 
terms of avoiding avoidable losses which arise when one acts or bets 
according to one’s degrees of belief (Williamson 2010: chapter 3, 
Williamson 2017: chapter 9). In order to avoid the possibility of 
loss whichever basic possibility turns out to be true, the Probability 
norm must hold. In order to minimise worst-case expected loss, the 
Calibration and Equivocation norms must hold.

OBE for Data Integration. Consider evidence consisting of datasets 
D1,...,Dk where each dataset Di measures some subset Vi of the set V 
of variables of interest. If V={X1,...,Xn} then each basic possibility 
takes the form X1=x1,...,Xn=xn, which we may abbreviate by x1···xn.

Each dataset Di determines a probability distribution Qi on Vi⊆V, 
which tallies the frequency with which each combination of values of 
Vi occurs in the dataset.
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Figure 4: Visualisation of the norms of objective Bayesian epistemology.

From this data distribution, we may infer something about the data-
generating chance distribution P*. If the dataset is large enough and 
of sufficient quality, we may be willing to infer that P*

⇂ Vi = Qi, i.e., 
that the chance distribution P*, defined over the whole domain V, 
matches the data distribution on the subdomain Vi. In this case Q acts 
as a point estimate of P*

⇂ Vi. Otherwise, if the dataset is not sufficiently 
large (but still of sufficient quality), we may only be willing to infer 
that P*

⇂ Vi lies in some convex confidence region around Qi . A 95% con-
fidence region, for instance, would be such that, if the process for 
generating Di were to be repeated, in 95% of the generated datasets 
the induced confidence region would include P*

⇂ Vi. Either way, then, 
we have that P*

⇂ Vi is constrained to lie in a closed convex set of prob-
ability functions on Vi. Note that any closed convex set of restricted 
probability functions on Vi⊆V can be represented as a closed convex 
set of unrestricted probability functions on V, the domain as a whole. 
Therefore, for each dataset Di there is some closed convex subset 
𝔼i of ℙ, defined on V as a whole, within which we infer that the 
chance function lies. Note that this inference is the sort of inference 
that is routinely drawn in classical frequentist statistics (Williamson 
2013b). It is only when calibrating a belief function P to the chances, 
by adopting the constraint P∈𝔼i, that we move to the realm of Bayes-
ian epistemology.
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Figure 5: Single dataset, point estimate.

Consider a simple example. Suppose there are two binary variables, 
V={A, B}. In this case the basic possibilities are Ω={ab, ab¯, a¯ b, a¯ b¯ 
}. In order to represent this scenario in two dimensions we shall as-
sume that a¯ b¯ is impossible, so we may restrict our attention to three 
basic possibilities, ω1=ab, ω2=ab¯, ω3= a¯ b. The set ℙ of probability 
functions is represented by the simplex ℙ in Fig. 5. Suppose there is 
a single dataset D1, measuring a single variable V1={B}, which yields 
an observed frequency of 0.9 for b, Q1(b)=Q1(ω1)+Q1(ω3)=0.9. If we 
use this as a point estimate of the chance function restricted to V, P*

⇂ Vi, 
then the chance function must lie on the line segment 𝔼1 depicted in 
Fig. 5. Applying OBE, the Calibration norm constrains a belief func-
tion P to also lie on this line segment. The Equivocation norm fixes P 
to be the function on 𝔼 closest to the equivocator function, as shown 
in Fig.5. If, instead of a point estimate, we infer a confidence region 
𝔼1, then P is yet more equivocal, as depicted in Fig.6.

In the case of two datasets, Fig.7 represents the objective Bayes-
ian approach to data integration. Here we infer from dataset D1 that 
P* lies in the closed convex set 𝔼1 of probability functions. P1 is the 
probability function that would be advocated by OBE from that da-
taset alone; this is the function to be represented by a fingerprint 
association model. Similarly for dataset D2. In this case V2={A}, and 
we have inferred a confidence region around the data distribution 
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Q2(a)=Q2(ω1)+Q2(ω2)=0.8. Since we infer that P* lies in 𝔼1 and we 
infer that P* lies in 𝔼2, we infer that it lies in both 𝔼1 and 𝔼2, i.e., in 
their intersection. Thus the set of calibrated probability functions is 
𝔼=𝔼1∩𝔼2. From this we choose the most equivocal function P. This is 
the function we need to represent using a handprint association model.

All this assumes that the region 𝔼1∩𝔼2 is non-empty; only then 
can we say that 𝔼=𝔼1∩𝔼2. This intersection is bound to be non-emp-
ty in our original example involving two datasets measuring vari-
able A and variable B respectively. But in more general situations, an 
empty intersection, 𝔼1∩𝔼2=∅, is a genuine possibility. If 𝔼1 and 𝔼2 
do not overlap, as represented schematically in Fig.8, then we have 
drawn inconsistent inferences which together imply that P*∈∅. The 
need to draw sensible conclusions about P* motivates abandoning 
these original inferences and starting again, using wider confidence 
regions around each dataset distribution.

Figure 6: Single dataset, confidence region.
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Figure 7: The objective Bayesian approach to data integration.

Figure 8: Inconsistent inferences: the 𝔼i do not meet.

These will translate into larger subsets 𝔼1 and 𝔼2 of ℙ. This process 
of revision needs to continue until 𝔼1∩𝔼2≠∅. Only then will the two 
inferences—namely the inference to the conclusion that P* is in 𝔼1 
and the inference to the conclusion that P* is in 𝔼2 —be consistent, 
and only then can we infer that P* is in 𝔼1∩𝔼2. This consistency main-
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tenance process is pictured in Fig. 9. All this generalises to the situ-
ation of k datasets with which we started: from each dataset Di one 
infers that the chance function P* lies in some region 𝔼i⊆ℙ; these 
inferences need to be jointly consistent, and can be made so by wid-
ening the confidence regions.

Note that widening the confidence regions corresponds to increas-
ing the confidence level. While the confidence level may initially be 
95%, we may need to widen the regions until the confidence level is 
99%, say. In Bayesian terms, we become increasingly confident that 
the chance function P* is in 𝔼. Indeed, if we are 100–δ% confident 
that P* is in 𝔼i, for each i=1,...,k, then we will be at least 100–kδ% 
confident that P* is in ⋂k

i  =1𝔼i; this follows from Adams’ Uncertainty 
Theorem (Adams 1998, Theorem 13). Therefore, a 1% increase in 
confidence for each region leads to at least a k% increase in confi-
dence for the process as a whole, where k is the number of datasets. 
Widening the confidence regions involves a trade-off, however, in 
that increasing confidence often leads to a less committal belief func-
tion P. While Fig. 9 shows that increasing confidence can lead to a 
fairly committal belief function, Fig.10 depicts a case in which three 
dataset regions are jointly inconsistent and in which widening the 
regions to make them consistent would lead to the equivocator func-
tion P= as the belief function P.

Figure 9: Widening the confidence regions to ensure that the 𝔼i meet.
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This point serves to highlight the fact that the belief function P de-
pends crucially on the chosen confidence level. Which confidence 
level should one choose? Plausibly, the confidence level should de-
pend to some extent on the number k of datasets under consider-
ation. This is to avoid situations analogous to the preface paradox: 
if the confidence level is 90% and there are 10 datasets then while 
one might infer, for each dataset, that the chance function lies inside 
𝔼i, one would expect the chance function to lie outside one of these 
regions because a 90% confidence level means that on average only 
9 out of 10 confidence regions would contain the chance function. 
Thus, it is only credible to infer that the chance function lies in the 
intersection of the 𝔼i when the (100–δ)% confidence level is great-
er than (100–100/k)% = 100(k–1)/k%. Equivalently, δ<100/k. 
Adams’ Uncertainty Theorem gives us an even tighter bound. If 
100–kδ%<50% then it may be more likely than not that the chance 
function lies outside the intersection of the 𝔼i. In order to avoid this 
possibility, we need to choose δ≤50/k. More generally, if there is a 
threshold τ such that we need to be at least τ% confident in the infer-
ence that P* ∈ ⋂k

i  =1𝔼i then we need to choose δ≤(100–τ)/k.

Figure 10: Widening confidence regions can lead to a less committal 
belief function.

There is a second consideration that arises when deciding upon a 
confidence level. This is that one needs to balance two desiderata: 
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confidence of inference (from the point of view of avoiding falsity, 
the more confident one can be about one’s inferences to chances, the 
better) and strength of inference (from the point of view of seeking 
truth, the more information one can extract from the evidence, the 
better). These two desiderata are in tension: higher confidence cor-
responds to wider regions which correspond to weaker inferences. 
The right balance will of course depend on the outcomes, such as 
the cost of obtaining more evidence: while weaker inferences corre-
spond to higher confidence levels, we have seen that they can lead to a 
more equivocal belief function, in which case evidence is more costly 
insofar as it fails to sway one’s beliefs. There are two extreme posi-
tions regarding the right balance between confidence and strength. 
One is uninteresting: if confidence absolutely trumps strength then 
inferences will be drawn to the widest possible confidence regions, 
𝔼i=ℙ, representing a 100% confidence level; this will always lead to 
fully equivocal degrees of belief, P=P=. The second extreme position 
is more interesting: if strength trumps confidence then use point 
estimates where possible—i.e., where it is consistent to do so—and 
otherwise increase the confidence level the minimum amount re-
quired to ensure consistency. This second position is quite plausible, 
for three reasons. First, although point estimates are almost always 
wrong, they are likely to be approximately correct—given our as-
sumption that the data is of sufficient quality and quantity to draw 
these inferences in the first place—so they can still yield sensible 
conclusions. Second, the impact of incorrect point estimates is miti-
gated by the fact that inferences under OBE are highly defeasible, 
in the sense that as new evidence is gathered, the three norms are 
applied over again, so the influence of misleading evidence can soon 
be washed out by new inferences about chances. (This is not so un-
der the subjective Bayesian approach, which conditionalises on total 
evidence and thus ensures its continuing influence.) Third, although 
one might worry that this extreme view leads to beliefs that are too 
committal, the Equivocation norm already ensures that, given some 
inferred 𝔼, degrees of belief are as equivocal as possible. Hence, opt-
ing for stronger inferences only leads to committal beliefs in a quali-
fied sense: one is inferring as much as possible from the data, but, 
given that fact, degrees of belief are as equivocal as possible.

We thus have some motivation for starting with point estimates 
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and increasing confidence levels just enough to ensure consistency. 
As an alternative approach, one might suggest the following recipe: 
instead of starting with point estimates, start with confidence re-
gions, where the confidence level incorporates the bound arising 
from Adams’ Uncertainty Theorem, i.e., start off with δ=(100–τ)/k 
and decrease δ just enough to ensure consistency. One should note, 
however, that this modification can significantly tip the balance away 
from strength of inference, towards confidence of inference, and can 
lead to very equivocal belief distributions. Consider the case where 
there is a large number k of datasets being integrated, none of which 
contains a large number of sampled individuals. In this case δ will 
be very small because k is large, the confidence level will be very 
high, and each region 𝔼i will be large because of this high confidence 
level and the small number of observations in each dataset. Thus the 
intersection of these regions can be large. Moreover, if each region is 
large enough to include the equivocator function P= then that is the 
function that will be chosen as the resulting belief function. (This is 
the same belief function that would be chosen if there were no data 
at all.) It seems that much of the useful information contained in the 
data is being overlooked. Starting with point estimates, as suggested 
above, avoids this problem.

Thus far we supposed that each dataset is of sufficiently high quality 
to permit an inference from the dataset to a point estimate or a con-
fidence region estimate. This is reasonable in the context of a systems 
medicine project, which is responsible for collecting its own data, 
and for its own quality control. (This assumption may be less reason-
able in the context of a systematic review or meta-analysis of studies 
produced by disparate research teams.) Nevertheless, even within a 
project, different datasets can be judged to be of differing quality. 
What can be concluded when the datasets are of variable quality? One 
possibility is to appeal to the following Bayesian approach which fac-
tors in judgements of quality. Let Qi be the proposition that dataset Di 
is of high enough quality for one to be willing to infer a confidence 
region estimate from the data at the 100–δ% level. Then,

P(P*∈𝔼i) = P(P*∈𝔼i|Qi)P(Qi) + P(P*∈𝔼i|¬Qi)P(¬Qi).

From a Bayesian point of view, P(P*∈𝔼i|Qi) is just the confidence lev-
el; P(Qi) is the judged quality level of the dataset; and P(P*∈𝔼i|¬Qi) 
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might be estimated to be the proportion of the simplex contained in 
region 𝔼i. Let x = P(Qi). Then,

P(P*∈𝔼
i
) = 100 – δx + |𝔼i|(1–x)

             100          |ℙ|
            

              

     

      

 
This relativises P(P*∈𝔼i) to the quality of the data. One can vary the 
confidence level P(P*∈𝔼i|Qi) from dataset to dataset to ensure a uni-
form value P(P*∈𝔼i) across the datasets.

*

We see, then, that objective Bayesian epistemology provides a sys-
tematic way of integrating datasets, each of which measures only a 
subset of variables of interest. The next step is to model the relevant 
probability distributions—i.e., to represent these probability distri-
butions efficiently, in such a way that probabilities of interest may 
easily be inferred from the model. Each dataset determines a prob-
ability distribution Pi; a model of such a distribution is a fingerprint 
model. A model of the distribution P which integrates all the data is 
a handprint model. (These models are all association models—they 
can be used for prediction, but they do not model causal relationships 
or mechanisms. Causal and mechanistic models will be considered 
separately in §5.) Recall from §2 that the standard approach in sys-
tems medicine is to determine a handprint model directly from the 
fingerprint models. Fig. 7 gives us reason to question this approach: 
while the integrating probability distribution P is determined by that 
data regions 𝔼i, it does not seem to be determined by the individual 
distributions Pi—there does not seem to be enough information en-
capsulated in these regions to determine P.

Next we shall propose a particular kind of fingerprint and hand-
print association model, namely an objective Bayesian net model. We 
shall see that at least in some cases, the fingerprint models do deter-
mine the handprint model.

Objective Bayesian nets. Bayesian nets have become perhaps the model 
of choice for representing and reasoning with a probability distribu-
tion on a finite number of discrete variables. This is because, while 
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probabilistic inference is extremely computationally complex in the 
worst case, probabilistic inference using Bayesian nets tends to be 
quite efficient in typical cases. Indeed, a wide variety of typically ef-
ficient algorithms have been developed, both for constructing Bayes-
ian nets (e.g. Neapolitan 2004) and for inferring probabilities from 
them (e.g. Darwiche 2009).

A Bayesian net consists of a directed acyclic graph (DAG) with the 
variables as nodes, together with the probability distribution of each 
variable conditional on its parents in the DAG. The main modelling 
assumption is the Markov Condition: each variable is probabilistically 
independent of its non-descendants in the graph, conditional on its 
parents. Under this assumption, a Bayesian net determines a joint 
probability distribution over the set of variables under consideration.

An objective Bayesian net (OBN) is a Bayesian net which repre-
sents a probability distribution advocated by OBE, i.e., a probability 
distribution which fits available evidence but which otherwise has 
maximum entropy. Thus OBNs can be used to represent the func-
tions Pi and P outlined above. OBN representations of the Pi consti-
tute fingerprint association models, while an OBN representing P is 
a handprint association model.

Let us consider how one might apply OBNs to data integration 
in systems medicine. We shall sketch the simplest case, where there 
are k consistent data distributions Q1,...,Qk, and these are used as 
point estimates, i.e., one infers that P*

⇂ Vi=Qi, for i=1,...,k. This case 
is treated in more detail in Landes and Williamson (2016). See Wil-
liamson (2005b) for a general introduction to OBNs.

The first task is to model each data distribution Qi. This can be 
done by applying the standard machine learning techniques alluded 
to above, to construct a Bayesian net that represents the data distri-
bution in question. Note that this Bayesian net only involves variables 
in Vi. Since we infer that the chance distribution matches the data 
distribution on V, P*

⇂ Vi=Qi, and the Calibration norm says that one’s 
belief function should match the chance distribution insofar as evi-
dence determines the chance distribution, this belief function should 
match the data distribution, Pi⇂Vi=Qi. Thus the Bayesian net model of 
Qi can also be thought of as a model of the probability distribution 
Pi advocated by OBE given evidence solely consisting of dataset Di. 
Consequently, this Bayesian net model of Qi is a fingerprint model.
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The second task is to build a handprint OBN model, which rep-
resents the distribution P advocated by OBE given all the datasets 
D1,...,Dk . In order to build the DAG in the model, first construct an 
undirected graph on V by linking each pair of variables that occur in 
the same subdomain Vi, for any i=1,...,k. This undirected graph is a 
Markov network (§3) which represents probabilistic independencies 
that are guaranteed to be satisfied by P: if Z⊆V separates X⊆V from 
Y⊆V in this graph then X and Y are probabilistically independent con-
ditional on Z, X⊥PY|Z, for the rational belief function P (Williamson, 
2005a, Theorem 5.1). (That these independencies provably hold is 
attributable to the fact that P maximises entropy. Of course it may 
be that the chance function P* does not satisfy all these independen-
cies, but as the data do not provide any information as to whether 
this is the case or not, the best one can do is act in accordance with 
the norms of OBE, i.e., in accordance with the rational belief func-
tion P.) Now P will satisfy further probabilistic independencies: for 
each i, P⇂Vi=Qi and the Bayesian net model of Qi implies certain in-
dependencies which cannot be inferred from the undirected graph 
by means of the separation criterion. In order to capture as many 
of these independencies as possible, one can prune edges from the 
undirected graph to yield a sparser Markov network.1 Next, one can 
transform the resulting sparser undirected graph into a DAG such 
that the Markov Condition is bound to hold—an algorithm for doing 
so is presented in Williamson (2005a: §5.7). This is the DAG in the 
OBN representation of P. It remains to specify the probability distri-
bution of each variable conditional on its parents in the graph. Some 
of these distributions can be obtained very straightforwardly (Lan-
des and Williamson 2016). For example, if a variable and its parents 
all occur in the same subdomain Vi for some i, then the distribution 
can be obtained from the corresponding fingerprint model. In other 

1 This can be done as follows. The undirected graph constructed above can 
be thought of as ⋃k

i  =1𝓒i,where 𝓒i=1 is the complete graph on Vi. Instead of this 
graph, one can take a sparser graph in two steps. First take ⋃k

i  =1ℳi, where ℳi is 
the moral graph on Vi formed by (i) taking the DAG in the Bayesian net model of Qi, 
(ii) for each variable in Vi joining each pair of its parent variables by an edge, and 
(iii) finally removing the orientations on the remaining arrows. Second, ensure 
that each pair of variables that occur together in more than one variable set are 
connected by an edge.
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cases, an optimisation problem must be solved in order to find the 
maximum entropy solution.

Dataset D1:            Dataset D2:

Bayesian net fingerprint model 1:      Bayesian net fingerprint model 2:

Objective Bayesian net handprint model:

Figure 11: An OBN handprint model from Bayesian net fingerprint models.

This procedure is illustrated in Fig. 11 in the case of two datasets, 
each of which measures three binary variables. In this illustration, 
the DAG of the handprint model looks much like the composition of 
the DAGs of the fingerprint models. While this is sometimes so, it 
is not always the case. However, in our set-up of k consistent point-
estimate data distributions Q1,...,Qk, it is always the case that the 
Bayesian net  fingerprint models determine the handprint model. 
This provides a partial vindication of the systems medicine method-
ology of constructing a handprint model from fingerprint models. It 
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is only a partial vindication because this does not apply to the more 
general approach involving confidence region estimates rather than 
point estimates. There, the handprint model will depend on the con-
fidence regions themselves, not simply on the fingerprint model: the 
fingerprint models do not ‘screen off’ the data from the handprint 
model.

Having sketched a principled way of integrating data to form a 
handprint association model, we shall now turn to the task of con-
structing a handprint causal model.

5 Causal and mechanistic models

In this section we shall outline a standard methodology for construct-
ing a causal model, argue for an alternative methodology, and devel-
op a general framework for model construction in systems medicine.

Standard methodology. As mentioned in §3, one common kind of 
causal model is a causal Bayesian net (CBN). This is a Bayesian net 
whose DAG conveys information about causal connections as well as 
probabilistic independencies: an arrow from one variable to another 
indicates that the former variable is a direct cause of the latter. In 
the CBN case, the Markov Condition, now called the Causal Markov 
Condition, says that each variable is probabilistically independent of 
its non-effects, conditional on its direct causes.

The standard approach to generating a CBN is a data mining ap-
proach: input a dataset; find a Bayesian net which best fits the data 
distribution (or a class of nets which best fit the data distribution); in-
terpret the arrows in the DAG (or those arrows common to all DAGs 
in the class of nets) as direct causal connections or as indicative of 
unmeasured common causes (Spirtes et al. 1993, Gammerman 
1999, Glymour and Cooper 1999, Pearl 2000: chapter 2). Accord-
ing to this standard approach, causal discovery can be automated 
by implementing appropriate data mining algorithms. This approach 
has been so influential that causal learning is now considered to be 
one of the sub-fields of machine learning.2 This standard approach 

2 Challenge problems are sometimes devised to test causal discovery algo-
rithms—see, e.g., Causality Workbench, http://www.causality.inf.ethz.ch/.
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is thus closely related to the way in which non-causal Bayesian net-
works are constructed from data. The idea is roughly that the arrows 
in such a Bayesian net represent a pattern of statistical associations 
and independencies, and that the best explanation of this pattern is 
that there are corresponding causal connections which give rise to 
the pattern, so we may interpret the arrows causally.

This standard data mining methodology needs to be adapted to 
fit the systems medicine context. This is because, in the systems 
medicine context, there is not a single dataset on the whole domain 
V from which to learn a causal handprint model—there are lots of 
datasets on various subdomains Vi. Thus, while one may be able to 
apply the standard methodology to yield causal fingerprint mod-
els, further methods are required in order to generate a handprint 
model. One such method was developed by Danks (2002); Tillman 
et al. (2008) and Tillman and Spirtes (2011): this involves patching 
together several CBN fingerprint models in order to generate a CBN 
handprint model.

The main difficulty with both this method and the standard data 
mining methodology is that they assume that all correlations should 
be explained causally. Even in the case of the fingerprint models, a 
causal interpretation of the arrows in the network is controversial 
(e.g. McKim and Turner 1997) and indeed often implausible. The 
best explanation of an association in the data may not be a corre-
sponding causal connection. In many cases the best explanation is 
measurement error or bias; or that the variables are associated in 
virtue of being time-series measurements, or in virtue of a seman-
tic, constitutive, logical, mathematical or physical connection rather 
than a causal connection (Williamson 2005a: §4.2). As medicine 
knows to its cost, only very rarely does a new association in data 
turn out to be genuinely causal.

Indeed, at least in the health sciences, establishing association is 
not normally enough to establish causation. Typically, in order to 
establish that A is a cause of B, one needs to establish not only that A 
and B are appropriately associated (i.e., that they are probabilistically 
dependent conditional on B’s other direct causes), but also that there 
is some underlying mechanism linking A to B which can account for 
this association and by which one can explain instances of B by citing 
instances of A (Russo and Williamson 2007). Only then is the best 
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explanation of the association between A and B that A is a cause of B.
This observation suggests a revision to the standard methodology 

for generating a CBN: one should base a causal model on evidence 
of mechanisms as well as on the associations found in data. Evidence 
of mechanisms tends to be much more multifarious than evidence 
of association. For instance, evidence of mechanisms can be had by 
manipulation (e.g. in vitro experiments), by observation (e.g. bio-
medical imaging, autopsy, case reports), from statistical trials (e.g. 
randomised controlled trials), from confirmed theory, by analogy 
(e.g. animal experiments), and by simulation (e.g. agent-based mod-
els). Clarke et al. (2014a) argue that all such evidence needs to be 
taken into account when establishing causal claims. As noted in §1, 
evidence of mechanisms can help to distinguish those correlations 
that are causal from those that are attributable to other consider-
ations, such as constitutive relationships.

Alternative methodology. This sort of revised methodology can be de-
veloped as follows. The goal is to generate CBNs that best fit both the 
pattern of dependencies and independencies suggested by the data 
and the causal constraints imposed by evidence of underlying mecha-
nisms. Instead of generating regular CBNs, however, we shall con-
sider labelled CBNs, that is, CBNs whose arrows are annotated. The 
label attached to an arrow provides information about the kind of 
connection represented by the arrow. Some arrows will be labelled 
as causal, while others may signify constitutional, semantic or logical 
connections, for example, and labelled as such.

For instance, mechanistic evidence might establish that A is not 
a cause of B (perhaps because A only occurs after B, or because A is 
related to B constitutionally rather than causally), in which case it 
imposes the following constraint on a causal handprint model: there 
should be no chain of causal arrows (i.e., arrows that are labelled as 
causal) from A to B. If the mechanistic evidence determines that A 
is related to B constitutionally rather than causally, then there is a 
further constraint that A and B should be connected in the DAG by 
arrows that are labelled as constitutional.

The key task is then to identify those labelled CBNs which (i) 
satisfy the constraints imposed by mechanistic and other evidence, 
(ii) explain all the dependencies in the OBN by labelled arrows in 
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the CBN, and (iii) posit as few connections as possible that do not 
correspond to dependencies in the OBN. One practical method for 
carrying out this task will be developed shortly.

The main difference between this approach and the standard 
CBN data mining methodology are as follows. First, evidence other 
than the data is taken into account by condition (i). Second, the stan-
dard CBN methodology explains all the dependencies in the data by 
causal relationships; here, condition (ii) requires merely that every 
dependency be explained in some way, by invoking a causal, mecha-
nistic, semantic, or some other relationship. (In certain cases it may 
be that, given all available evidence, the best explanation of a depen-
dency in the data is that it is accidental, attributable for example to 
a small sample size. In such cases, the corresponding arrows may be 
labelled ‘accidental’.)

If necessary, the labels attached to the arrows of the CBN can be 
further refined. In particular, once the labelled DAG is constructed, 
one can evaluate each of the causal claims posited by the model, con-
sidering a causal relationship to be established just when the available 
evidence establishes both an appropriate association (with respect to 
the chance function P* rather than the rational belief function P) and 
that this association is causal, i.e., that there exists some suitable 
mechanism which appeals to the putative cause to explain the puta-
tive effect. One can then further label the corresponding arrow in 
the DAG as ‘established’. Those causal claims that cannot be consid-
ered to be established may be classified as provisionally established (or, 
more simply, provisional); arguable; or speculative, ordered according 
to increasing likelihood that future evidence will lead to such claims 
being revisited and rejected (Parkkinen et al. 2018). This leads to a 
more fine-grained classification of causal relationships.

Having constructed the labelled DAG of the CBN, it remains to 
specify the probability distribution of each variable conditional on 
its parents in the DAG. The joint probability distribution P, defined 
over the domain as a whole, is already fully determined by the OBN, 
and the required marginal distributions can thus be obtained direct-
ly from the OBN by applying standard Bayesian network inference 
algorithms.
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Constructing a labelled DAG. So, how should the labelled DAG be con-
structed in practice? We shall describe an approach which presup-
poses that the available evidence fully determines the non-causal 
relationships. It is often the case that mechanistic evidence deter-
mines the constitutional relationships but does not fully determine 
the causal relationships. Similarly, evidence of semantic relationships 
among the variables may well fully determine which variables have 
overlapping meaning yet fail to determine, of those variables that 
represent disjoint events, which causes which. If it is indeed the case 
that the non-causal relationships amongst the variables are known, 
then any unexplained correlations in the data are best explained 
causally. If so, then, by default, causal relationships should be posited 
to explain unexplained correlations.

The first step is to construct a model which best represents those 
DAGs that chart the probabilistic independencies of the joint prob-
ability distribution P. The standard way to represent a Markov equiva-
lence class of DAGs—i.e., a class of DAGs that characterise the same 
set of independencies—is to construct a partially directed acyclic graph 
(PDAG). This is a graph which may contain a mix of arrows and 
(undirected) edges, with no directed cycle. A PDAG represents an 
equivalence class of DAGs when every completion of the PDAG (an 
orientation of the undirected edges in the PDAG which produces a 
DAG) lies in the equivalence class, and, vice versa, every member of 
the class is a completion of the PDAG.

This PDAG is straightforward to construct, given a catalogue of 
the independencies of the probability distribution. Koller and Fried-
man (2009: §3.4), for example, provide simple algorithms for gen-
erating the PDAG which represents the equivalence class of minimal 
DAGs that characterise the independencies of a joint distribution. 
These independencies can be read off the undirected Markov net-
work which was constructed in §4 as a stepping-stone to an OBN: 
recall that, if Z separates X from Y in this graph then X and Y are 
probabilistically independent conditional on Z.3

3 If all the independencies of P can be represented by some DAG then the 
PDAG is uniquely determined. (A sufficient condition for this is that the un-
directed graph used in the construction of the OBN is triangulated.) If not, 
then a class of PDAGs will be needed to represent the class of all possible DAGs 
compatible with P (see, e.g. Koller and Friedman 2009: §3.4).
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Having constructed the PDAG, the second step is an iterative ap-
proach to solving a constraint satisfaction problem. The DAGs repre-
sented by the PDAG satisfy condition (iii) given above: they posit as 
few connections as possible that do not correspond to dependencies 
in the OBN, since they are minimal models of the independencies 
of P. It remains to satisfy the other conditions: i.e., to find the la-
belled DAGs that satisfy the constraints imposed by mechanistic and 
other evidence. This can be done by searching through the DAGs 
represented by the PDAG, seeing whether some labelling exists that 
satisfies the constraints, and rejecting those DAGs that do not satisfy 
the constraints. If no such minimal DAG satisfies the constraints, 
then we can proceed to search incrementally through DAGs with 
one or more extra arrows. Assuming the constraints are satisfiable 
at all, this culminates in a set of minimal labelled CBNs that satisfy 
the constraints imposed by all the evidence—not just the datasets.

Figure 12: Relationships amongst models.

The more fine-grained labelling might be used to select certain pre-
ferred models from within this set for the purpose of inference. The 
aim would be to select those causal handprint models whose causal 



463Models in Systems Medicine

relationships are less prone to revision—i.e., to prefer established 
causal relationships over those that are provisional, provisional over 
arguable, and arguable over speculative. The handprint model can 
then be used for causal inference—e.g., for deciding which of the 
correlates of an outcome variable, such as severity of disease, to in-
tervene upon in order to alleviate the disease.

General framework for model construction. In terms of the array of hand-
print models discussed in §3, the causal model depends not only on 
the correlations represented by an association model, but also on the 
mechanisms represented by a qualitative mechanistic model. The 
general picture is presented in Fig. 12. This depicts the situation in 
which the fingerprint models screen off the data from the associa-
tion model, as is the case for instance with point-estimate Bayesian 
net fingerprint models and an OBN handprint model. Note that evi-
dence other than data can influence the choice of fingerprint mod-
els. For example, information about mechanisms assists with the 
design and interpretation of statistical trials (Clarke et al. 2014a). 
Similarly, associations found in the data and represented in the fin-
gerprint models can suggest new mechanistic connections, and so 
influence the development of a qualitative mechanistic model. As 
suggested above, a causal handprint model needs to be influenced by 
both the associations represented in the association handprint model 
and the pattern of mechanistic connections implied by a qualitative 
mechanistic model. This mechanistic model may well be tentative in 
parts or incomplete. Causal models tend to be quantitative, so the 
causal model can, in turn, influence the development of a quantita-
tive mechanistic model by suggesting relationships amongst quanti-
ties that feature in the mechanism.

It is thus possible to develop a principled methodology for struc-
turing the development of models in systems medicine—an array 
of models which can otherwise seem bewildering to those involved 
in a large systems medicine project, let alone those outside the proj-
ect trying to comprehend its results. As a further simplification, 
the Bayesian network modelling formalism can be used to unify the 
models employed in such a project: standard Bayesian nets can act 
as useful association fingerprint models; an objective Bayesian net 
constitutes an association handprint model; as we have just seen, in 
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conjunction with qualitative information about mechanisms, such a 
net is a natural stepping stone to a labelled causal Bayesian net hand-
print model; finally, recursive Bayesian nets (see §3) allow one to 
draw inferences across the levels of a hierarchical mechanism, and so 
act as a kind of quantitative mechanistic model.

While this approach structures and unifies modelling in systems 
medicine, it does not make modelling easy. In particular, it is harder 
to automate the discovery of causal relationships under this approach 
than it is under the standard (but problematic) data-mining approach. 
This is because causal claims need to track mechanistic connections 
as well as associations in the data, and thus the whole range of evi-
dence of mechanisms needs to be evaluated in order to determine 
how it constrains the causal claims that can be made. Therefore, the 
pathways from evidence to a qualitative mechanistic model, depicted 
in Fig. 12, are not readily automated. Moreover, it is not easy to au-
tomate the move from qualitative mechanistic models that take the 
form of diagrams or pictures, such as Fig. 3, to constraints on a CBN. 
In order to automate this step, one needs other forms of qualitative 
mechanistic model which are more accessible from a computational 
point of view (though invariably less intuitive to humans). These sorts 
of models, standardised by being represented in Systems Biology 
Markup Language (SBML) and structured in terms of semantic rela-
tionships specified in various biomedical ontologies, are increasingly 
prevalent in systems medicine (see, e.g., Hoehndorf et al. 2011).

6 Conclusions and open questions

Progress in systems medicine has been slower than anticipated. Ar-
guably this for two main reasons: (i) evidence integration is a chal-
lenge; (ii) building and comprehending a large array of models is a 
challenge. In this paper I have tried to take a constructive approach to 
these two challenges, by setting out a possible modelling methodol-
ogy for systems medicine. At a general level, this methodology seeks 
to elucidate the relationships between models, as well as to structure 
their development, as depicted in Fig. 12. At a more specific level, 
this methodology fits very well with the Bayesian net approach to 
modelling, and objective Bayesian nets offer a natural framework for 
data integration.
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This paper has focussed on theoretical models in systems medi-
cine—models that are abstractions of the phenomena they seek to 
model. Biological models—i.e., models that are organisms or parts of 
organisms (Wilde and Williamson 2016)—are also widely applied 
in systems medicine. While the relationship between theoretical 
and biological models is somewhat complex, an interesting next step 
would be to integrate the role of biological models into this model-
ling framework.

In terms of developing the OBN formalism, while OBNs are cur-
rently well understood in the case of consistent point-estimate data 
distributions, this is far less so in the case of confidence-region es-
timates. This is one natural direction for further research. Another 
direction involves extending the OBN methods introduced above, 
which deal with datasets that measure subsets of V, i.e., unconditional 
marginal distributions of P*, to those that measure conditional mar-
ginal distributions. Often, a study will examine only a subpopulation 
of the target population, e.g., patients who are not pregnant, and 
its conclusions can be thought of as pertinent to estimating a condi-
tional chance distribution, e.g., P*(.|¬Pregnant). While the objective 
Bayesian principles of data integration that are outlined above extend 
naturally to this situation, it remains to be seen how the algorithms 
for OBN construction should best be adapted to the conditional dis-
tribution case.

With regard to the labelled CBN formalism, two tasks are partic-
ularly pressing. First, the approach introduced above dealt with the 
case in which any unexplained correlation is to be explained causally. 
A strategy is needed for dealing with other situations—e.g., those in 
which one needs to decide whether to introduce a causal claim or a 
constitutional claim to explain a correlation. One strategy is to ap-
peal to Craver’s characterisation of constitution relations in terms of 
mutual manipulability (Craver 2007). However, this approach has its 
detractors (e.g. Leuridan 2012, Baumgartner and Gebharter 2016), 
and bears closer scrutiny. Second, predicting the effects of interven-
tions can be non-trivial when some of arrows in the model are non-
causal. In a CBN in which all the arrows are causal, one can predict 
the effect of interventions by deleting the arrows that lead into the 
variable which is intervened upon, and then using standard Bayesian 
network inference algorithms to update the probabilities of variables 
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of interest. In the labelled CBN formalism, if some of the arrows 
incident upon the intervention variable are non-causal, it can be far 
from obvious as to which—if any—of these should be deleted. The 
prospects of a generalised approach to intervention is an interesting 
question for further research.4

Jon Williamson
University of Kent

j.williamson@kent.ac.uk
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