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Abstract 
The standard Bayesian recipe for selecting the rational choice is pre-
sented. A familiar example in which the recipe fails to produce any defi-
nite result is introduced. It is argued that a generalization of Gärdenfors’ 
and Sahlin’s theory of unreliable probabilities — which itself does not 
guarantee a solution to the problem — offers the best available ap-
proach. But a number of challenges to this approach are also presented 
and discussed.  
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Let us suppose that a person called Mary, who likes to carefully and 
methodically ponder all her decisions, goes to the furniture store to 
purchase a new couch. And let us suppose, to keep things from 
getting unnecessarily knotty, that she has trimmed her options down 
to three. Couch A is very cute and stylish but (not surprisingly) rather 
uncomfortable and pricey. Couch B is not so stylish, but it is more 
comfortable than couch A, and its price is average. Couch C is by far 
the most comfortable of all three couches, and it is a bargain. Its 
design, however, leaves much to be desired. Mary knows that, de-
pending on whether she settles on design, price or comfort as her 
priority, her ordinal preference ordering will be different (Table 1). 
But the problem, of course, is that none of these attributes stand 
alone before her as the sole priority.  

Now, the question of interest in this article is this: What should 
rational people do in order to solve such a choice problem rationally, 
as opposed to simply rely on chance or blind impulse? What should 
rational people do, that is, to rationally reconcile conflicting preference 
orderings? I will first introduce the standard Bayesian recipe for 
selecting the rational choice, which provides nowadays the canonical 
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answer to this question, and then examine some related but much less 
studied issues that arise when some of the available choice options 
involve — more or less — unreliable probabilities. 

 

Design as priority Couch A  couch B  couch C 

Price as priority Couch C  couch B  couch A 

Comfort as priority Couch C  couch B  couch A 

Table 1 
 

The standard Bayesian recipe for selecting the rational choice goes 
essentially like this. We must first identify those attributes that either 
increase or decrease the desirability of each single competing option. 
In our case, I think it is safe to assume that our previous attributes 
almost invariably determine our choices — other attributes like (say) 
size, color, and manufacturer’s name being equal — when buying a 
new couch: comfort M, design D, and price P1. Second, standard 
Bayesianism asks us to ascribe cardinal utilities (invariant in their 
representational properties up to a positive affine transformation) to 
all individual attributes associated with each single competing alterna-
tive. In the simplest of cases, we can assume that such allocations 
correspond to single real scalars, rather than continuous functions —
we will get to the latter case, which is by and large the standard in the 
context of science and engineering, below2. We can assume, for 
example, that Mary gives couch A, B, and C the following scorecards: 

 
1 Exactly the same Bayesian procedure, though slightly more intricate, would 

apply if we let all six or more of these attributes change among competing alterna-
tives. It is also worth noting that none of the attributes, including price, must 
necessarily be associated with a quantitative value: they can be, for example, 
assessed in terms of good, fair, bad, and so on, though their utilities (see next) must 
of course be quantitative.  

2 Only in very simple cases — like the one presented here, or (say) Savage’s fa-
mous omelette, or Gärdenfors’ and Sahlin’s Miss Julie and the tennis match — can 
single attribute utilities be introduced in the form of fixed single scalars. In science and 
engineering, in contrast, where single attributes are extremely variable (given the 
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 u(M) u(D) u(P) 

A 2 5 2 

B 4 4 3 

C 5 1 4 

Table 2 
 

And third, we are required to associate a scaling value, which repre-
sents how strongly we want (or dislike) each single attribute against all 
others, to all individual attributes. Let us assume, in line with the 
assumption above that none of the attributes are her sole priority, the 
following scaling values k for M, D, and P according to Mary: 
 

 k 

M 4 

D 3 

P 3 

Table 3 
 

Provided this, and provided that we are still dealing with a situa-
tion where the subjective probability measure defined over the possi-
ble states of the world is assumed to be either 0 or 1 (i.e., a situation 

 
extreme variability of parameters like mass, elasticity, thermal conductivity, and so 
on, which determine the value of such attributes), single attribute utilities are usually 
introduced as (often continuous) functions. In order for this article to be of relevance 
not only to philosophers but to anyone with an interest in decision theory in its most 
diverse applications, I will consider later on the most general formulation of the 
issues, of which the aforementioned examples are only special cases. 
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of epistemic certainty where no other probabilities are involved), we 
are finally asked by the Bayesian to determine the overall utility of A, 
B, and C simply by adding all single attribute utility measures, factor-
ized by the corresponding scaling values, allotted by Mary to each 
individual attribute M, D, and P of A, B, and C.  
 

U (A) = u(M)A kM + u(D)A kD + u(P)A kP = 8 + 15 + 6 = 29 

U (B) = u(M)B kM + u(D)BB kD + u(P)B kP = 16 + 12 + 9 = 37 

U (C) = u(M)C kM + u(D)CC kD + u(P)C kP = 20 + 3 + 12 = 35 

Table 4 
 

This is, in a nutshell, what the standard Bayesian recipe would ask 
of rational epistemic agents that, in a context of certainty, are strug-
gling to come up with a resolution to their choice problem3. In our 
present case, this recipe would tell us that, in spite of the fact that A 
is the maximally stylish couch and C is the maximally comfortable and 
least expensive couch, the rational option is actually B — the option 
which maximizes overall utility. Now, it is easy to see, even in such a 
simple case like this, that much depends on how the single attribute 
utility measures and scaling values are respectively distributed by the 
agents. There exist competing lottery methods whose object is pre-
cisely to offer an accurate framework for assessing what utility meas-
ure and scaling value corresponds to each single attribute, and for 
aggregating such measures when many epistemic agents are involved4. 

 
3 Standard Bayesianism stands here for either a causal or evidential decision the-

ory as famously presented, for example, in von Neumann & Morgenstern 1944, 
Luce & Raiffa 1957, Savage 1972, Jeffrey 1983, and Skyrms 1990. 

4 The possibility of aggregating individual utilities is often countered with skep-
tical arguments — such as the ‘zero-point utility’ and ‘unit of utility’ arguments — 
which maintain, roughly, that inter-subjective comparisons of utilities are, in 
general, meaningless — they claim, in a word, that no co-ordinatization of the 
utility-space, and no metric system for this space, can be objectively singled out 
among all possible options. It is such reluctance to consider inter-subjective com-
parisons of utilities, explicitly rejected by Arrow, what makes the Impossibility 
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Before we illustrate this point, let me introduce the most general 
(under epistemic certainty) form of this Bayesian recipe, whereby any 
finite number n of attributes is involved, and all single attribute 
utilities are continuous functions rather than scalars.  

For independent single utilities, the overall utility of each compet-
ing choice (in a context, again, of certainty) is determined from5: 

[1] 

where X is the vector of single attributes x1, x2, …, xn associated with 
the choice option in question, ui (xi) is the single attribute utility func-
tion for attribute xi, ki is the scaling value of single attribute xi, and K is a 
normalizing constant derived from ki, where 1 + K = ∏ (1 + Kki). 

There exist, as noted, distinct lottery methods for plotting the 
values of ui (xi) and ki. One such method consists, roughly, in asking 
all agents to imagine that two competing options are being consid-
ered, each alike in every respect except one: the attribute level xj for 
the ‘certain’ option is known with certainty to be (say) 24 while xj for 
the ‘lottery’ option has (say) a 60% probability p of being xj max = 30 
(maximal utility) and a 40% probability 1 – p of being xj min = 20 
(minimal utility)6. The agent is then asked: ‘Which option do you 
prefer: the certain option, the lottery option, or are you indifferent?’. 
If she responds ‘The certain option’ the value of xj is decreased (in-
creased) to a less desirable level that is half-way between 24 and 20 
(or half-way between 24 and 30, if xj’s desirability goes down when xj 
goes up). The agent is again required to express her preference, and if 
the lottery option is now preferred, the value of xj is increased until 
the decision maker is indifferent between the ‘certain’ option and the 
‘lottery’ option. A point on the single attribute utility function uj (xj) 
is plotted as p uj (xj max) + (1 – p) uj (xj min) when such indifference 

 
Theorem’s disturbing results in social choice theory a demanding challenge for the 
Bayesian — see Arrow (1950; 1963), Sen 1970, Suzumura 1983. 

5 I follow here, and later, Keeney & Raiffa 1976, chapter 6. 
6 As noted before, attributes must not necessarily be quantitative. The same 

procedure (though slightly more cumbersome, given that scalars often provide a 
more extensive and fine-grained spectrum of choices) would apply if the relevant 
attributes were evaluated in terms of a qualitative scale, like (say) the descriptor 
scale mentioned before: excellent, good, fair, and so forth. 
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points are reached. And the procedure is iterated for different ps until 
the entire function, or at least the function within some interval of 
interest, is sufficiently outlined. Similar types of lottery questions are 
employed for plotting the levels of ki

7. 
One more technical ingredient before we get to our problem. 
So far we have been dealing with a choice problem in a context of 

certainty. It is common in the decision-theoretic literature, despite 
frequent terminological discrepancies that still muddle many discus-
sions, to distinguish between decision problems in a context of: (i) 
certainty, (ii) risk, (iii) uncertainty and (iv) ignorance. A choice 
problem under risk is assumed to involve non-trivial (i.e., other than 
0 and 1) subjective probability measures over the possible states of 
the world. And such probability measures are taken to be fully reli-
able. Choice problems under uncertainty and ignorance, in contrast, 
are considered to be, respectively, those whereby the probability 
distributions are either unreliable — and the measure of such unreli-
ability is determined differently in different theories of unreliable 
probabilities8 — or completely unknown. I will now introduce a 
slightly different decision problem regarding couch A, B and C. And I 
will incorporate probabilities into it. In doing so, I will set forth the 
problem involving unreliable probabilities that I want to discuss in the 
remainder of this article. But let us first upgrade equation [1]. For 
independent single utilities, the overall expected utility of each alterna-
tive choice is determined from: 

[2] 

where everything is as before, and fi (xi) is the probability density 
function correlated with attribute xi. For all choice problems under 
 

7 See Keeney & Raiffa 1976, chapters 4 and 5. For a detailed description of one 
of the first computational models developed to carry out these procedures, see 
Thurston 1991. 

8 Three of the major theories are due to Ellsberg 1961, Levi (1974; 1980; 1982; 
1986), and Gärdenfors & Sahlin 1982a, reprinted in 1988. Earlier theories can be 
found in Wald 1950 and Hurwicz 1951. And alternative approaches can be found in 
Skyrms 1980, Kaplan 1983, Sahlin 1983, and Baron 1987. For more recent theo-
ries, with emphasis on the implementation in science and technology and their main 
focus on fuzzy sets, see Dubois & Prade 1988, Dubois, Prade & Yager 1996, Antons-
son 2001. 
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risk, fi (xi) is assumed to be completely reliable. But for problems 
under uncertainty (and, of course, ignorance), this assumption does 
not hold. How are these probabilities obtained in the first place? 
Bayesian decision theory is based on subjective probabilities. So we 
start out with a set probability measures defined (in principle) over all 
possible states of the world. Such initial probability measures may 
indeed be arbitrary. But new information — arising, for example, 
from new observations — will adjust the original measures so that 
they converge toward an ‘objective’ distribution, as established by de 
Finetti’s famous Representation Theorem9. In practical applications of 
Bayesianism, it is also routine to supplement such so-called ‘judg-
mental information’ with statistical estimates10, for which different 
methods exist which determine goodness-of-fit of probability distribu-
tions given the available statistical data — the most recognized of 
such methods being Chi-square, Kolmogorov-Smirnov and Anderson-
Darling. A problem with the statistical approach, however, which 
compromises the probabilistic assignments the Bayesian makes from 
hard data, is that different goodness-of-fit methods occasionally pre-
scribe different probability distributions to exactly the same data. 
This is referred to in the literature as the ‘distribution arbitrariness 
problem’11. In this paper, I will just ignore this problem. 

Let us get back now to the furniture store example.  
Imagine that Mary, following the standard Bayesian recipe, has fi-

nally settled on couch B. Now she faces the final, and maybe most 
 

9 See de Finetti 1937, reprinted in Kyburg & Smokler 1964. The concept of 
‘objective’ probability can be literally understood, of course, as a reflection of 
actual propensities in the world or — and this is the view that de Finetti would 
favour — an inter-subjective probability distribution to be obtained while asymp-
totically reaching the end of inquiry. 

10 See for example Ang & Tang 2007, where it is argued that Bayesianism is the 
best tool for dealing with probabilistic phenomena, since it provides, unlike the 
classical probabilistic methods based exclusively on statistical data, a framework for 
easily combining scientific and technological expert knowledge with brute statistical 
information. 

11 See Ditlevsen 1994. See also Hansson 2009. It is worth noting that a better 
name would be, I believe, ‘distribution under-determination problem’, for the 
problem seems to be rather the under-determination of probability distributions by 
data. And under-determination, I think, does not necessarily entail arbitrariness: we 
may have good non-arbitrary reasons for accepting Q rather than ¬Q, although no 
reason can be given which determines Q. 
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challenging, decision problem. She is informed that couch B is manu-
factured at two different locations: Ψ-town and Φ-town. It is of the 
utmost importance that couch B be delivered precisely on time — 
say, June 1st — for Mary is about to embark on a very long trip — 
on, say, June 2nd — and the couch must be necessarily in place before 
she departs. She is informed, in addition, that the factory in Ψ-town 
delivers on time — statistically — 50% of the time. That is, provided 
a long sample of cases (seventy years of work, with hundreds of 
deliveries per year), roughly 50% of those deliveries were right on 
time12. Finally, Mary is informed that the factory in Φ-town delivers 
on time 100% of the time when they do not have old pending orders 
but 0% of the time — that is, no timely deliveries at all — whenever 
there is a backlog13. And there is no available information whatsoever 
regarding whether they presently have a backlog or not — and, as 
most readers familiar with furniture dealers and manufacturers will 
understand, they are not at all responsive to phone calls or emails. 
Mary has, yet again, settled on couch B. So she must now choose 
rationally — and by that we mean that she must choose so as to pro-
mote her goals, for we still follow here the old Humean notion of 
instrumental rationality inherent to Bayesianism14 — in such a way 
that, given all she knows, couch B has the most chances of being 
delivered on time. 

 
12 It would be of course unrealistic if I said that exactly 50% of deliveries were 

right on time. Readers who will find this unsettling for the argument that comes 
next may well assume that that was indeed the case. 

13 Due to, say, returned merchandise in need of repair. Otherwise, backlogs 
would be impossible in Φ-town. On the other hand, when the factory is behind 
schedule, new employees are hired to clear the backlog. 

14 Hume famously stated that the fixation of goals falls outside the province of 
rationality, and thus it is not contrary to reason ‘(…) to prefer the destruction of 
the whole world to the scratching of my finger’ (1969: 463). The object of rational-
ity, rather, is to tell any rational individual how to achieve whatever goal she has set 
her mind on. As Simon put it, ‘(…) reason is wholly instrumental. It cannot tell us 
where to go; at best it can tell us how to get there. It is a gun for hire that can be 
employed in the service of whatever goals we have, good or bad’ (1983: 7–8). 
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delivered on time. These two situations, then, are epistemically 
indiscernible for the Bayesian. But it is clear that the situations are not 
evenly appealing in terms of their subjective potential at promoting the 
desired goal — getting the couch delivered on time. They are not 
equally appealing, in other words, in terms of their instrumental 
rationality. The standard Bayesian, although she helped us before, 
cannot help us now. 

This problem, which goes back at least to Peirce15 and to Popper’s 
and Ellsberg’s famous paradoxes16, does not yet have a universally 
accepted solution. I will now briefly offer my own solution, which is a 
generalization of Gärdenfors’ and Sahlin’s well-known theory of unreli-
able probabilities — which itself, given its reliance on minimal satisfac-
tory levels of epistemic reliability, which in turn determine the set of 
probability distributions from which the MMEU criterion maximizes 
minimal expected utility, does not guarantee a solution to the prob-
lem17. And I will then say why this solution, which (to my mind) is the 
best available approach, may not yet be entirely satisfactory.  

 
15 Peirce (1932: 421) famously said: ‘(…) to express the proper state of belief, 

not one number but two are requisite, the first depending on the inferred probabil-
ity, the second on the amount on knowledge on which that probability is based’. 
This second number, in this case, would presumably break the tie for a Bayesian. 

16 See Popper (1959: 407–408) for a standard formulation of the so-called 
‘paradox of ideal evidence’, although the paradox was discovered by Peirce himself. 
It shows, in a word, that a strict Bayesian should be as inclined to believe that the 
next toss of a fair coin is going to yield heads as she is to believe that the next toss of 
an entirely unknown coin is going to yield heads, which is evidently unwarranted. 
And see Ellsberg (1961: 653–654) for the introduction of his famous paradox, to 
which we will return later. 

17 If, for example, the degrees of reliability of the 50% chance of timely delivery 
from Ψ-town and Φ-town both fell below such minimal satisfactory level of 
reliability, then Gärdenfors’ and Sahlin’s theory would as well be silent with respect 
to what choice, either placing the order in Ψ-town or Φ-town, is to be preferred. 
This minimal satisfactory level of reliability, still, could be viewed as a fluid parame-
ter, so that the context dictates its value — and it conveniently does so in a way that 
it is always below the threshold of reliability of some probability. But the catch now 
would be, I think, that the resulting theory is hardly normative, for we now allow 
this parameter to be a mere reflection of an agent’s varying risk appetites (more on 
this in footnote 23). The reader must remember that Gärdenfors’ and Sahlin’s 
decision theory consists of two central moments. First, the decision maker must 
restrict, provided all competing alternatives in a decision situation, the set of 
possible probability measures for that situation ‘to a set of probability measures 
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I believe, in a word, that the rational response to this choice prob-
lem — whether to place the order in Ψ-town or Φ-town — is to 
place the order in Ψ-town. Why? Because the 50% chance of getting 
the couch delivered on time that follows from this choice is more 
reliable (more information, of statistical or judgmental nature, is 
behind this probabilistic appraisal) than the 50% chance obtained 
from placing the order in Φ-town. Let us define δ as the real-valued 
degree of reliability, with 0 ≤ δ ≤ 1, that corresponds to all subjective 
probability distributions defined over the possible states of the world. 
In our present case, this amounts to the contention that the 50% 
chance of timely delivery associated with the choice of placing the 
order in Ψ-town has a δ1 measure of reliability, and the 50% chance 
associated with placing the order in Φ-town has a not necessarily 
identical δ2 measure of reliability. And so my previous claim concern-
ing the 50% chance of timely delivery from Ψ-town being more 
reliable than exactly the same chance of timely delivery from Φ-town 
amounts now to the simple claim that δ1 > δ2.  

What must be shown at this point is that, all other things being 
equal, higher δ’s correspond to higher expected utilities. But is this 
necessarily the case? My discomfort with the present approach, which 
has just been insinuated, comes from the realization that, although this 
is usually the case, it might not always be the case. But let us first ex-
plore how higher δ’s may correspond at all to higher expected utilities. 

The original overall utility of choosing couch B, as opposed to 
couches A or C, is: 

[3] 

where XB is the vector of single attributes x1, x2, …, xn of choice B. 
No consideration as to the on-time delivery of couch B is yet included 
among these attributes. 

The overall expected utility of opting for couch B when couch B is 
manufactured in Ψ-town is:  

 
with a ‘satisfactory’ degree of epistemic reliability’ (1982a: 369). Second, the 
decision maker must apply within this restricted set of probability measures the 
maximin criterion for expected utilities: she must choose that alternative which has 
the largest minimal expected utility. For a short description of the theory, see 
Gärdenfors & Sahlin 1982a, reprinted in 1988. Criticism can be found in Levi 
1982, with a reply from the authors (Gärdenfors & Sahlin 1982b), and Levi 1985. 
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[4]  

where probability i = 0.5 if xi = xΨ and i = 1 otherwise. The 
additional attribute of on-time delivery is here represented by xΨ. The 
single attribute utility uΨ (xΨ) and scaling value kΨ are both normal-
ized at 1. 

The overall expected utility of choosing couch B if manufactured 
in Φ-town is:  

[5]  

where probability i = 0.5 if xi = xΦ and i = 1 otherwise. The 
additional attribute of on-time delivery is here represented by xΦ. The 
single attribute utility uΦ (xΦ) and scaling value kΦ are both normal-
ized, again, at 1. 

Now, the reader can easily verify that equations [4] and [5] will 
yield exactly the same result. The utility and scaling values assigned to 
the attribute of on-time delivery are the same in [4] and [5]. And the 
probability allocated to such event is also the same (i.e., 0.5) in both 
equations. And all the remaining parameters are, naturally, the 
same18. This is the reason why these two situations are precisely the 
same for the standard Bayesian. And this is the reason why it was 
contended above that the standard Bayesian cannot possibly break the 
tie between them: for her, these two situations are epistemically 
indiscernible.  

My proposal to break the tie, and therefore to be able to rationally 
decide between placing the order in Ψ-town or Φ-town, is to incor-
porate Gärdenfors’ and Sahlin’s value δ into the equations, although 
not as a measure of minimal satisfactory degrees of epistemic reliabil-
ity, which are in turn responsible for artificially setting a cap on what 
probabilities will actually make it to the utility calculus, but rather as 
a measure of the reliability of all subjective probabilities defined over 
the possible states of the world, for epistemic agents a1, a2,…, am at 

 
18 More precisely, all ki except for kΨ in [4] and kΦ in [5] are 0 at this stage, if we 

expect the attribute of on-time delivery to be necessary, as stipulated above. I thank 
one of the referees for pointing this out to me. 
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time t19. When choosing couch B if manufactured in Ψ-town, we 
obtain as measure of the overall expected utility: 

[6]  

where everything is as before and δi = δ1 if xi = xΨ and δi = 1 oth-
erwise. 

The overall expected utility of choosing couch B, on the other 
hand, when couch B is manufactured in Φ-town is: 

[7]  

where everything is as before and δi = δ2 if xi = xΦ and δi = 1 other-
wise. But we assumed earlier that δ1 > δ2, for there is statistical 
information behind Ψ and no information at all, other than the 
assumption that backlogs are neither more likely nor less likely in Φ-
town than no backlogs, behind Φ. It follows immediately from this, 
as readers can confirm by themselves, that E[U(XB + xΨ)] > E[U(XB + 
xΦ)]. The rational option is, therefore, to place the order in Ψ-town.  

The most general result here, for any finite number n of attributes 
x1, x2, …, xn of a choice T open to agents a1, a2,…, am and displaying 
single independent utility functions ui (xi), with probability density 
functions fi (xi) and reliabilities δi between 0 and 1, is:  

[8] 

The old rule of maximizing expected utility will then determine, as it 
does in the standard case, that T must be chosen as the rational option 

 
19 This proposal aims not only at capturing the way scientists and engineers deal 

in reality with probabilistic knowledge, but also providing a decision theory that can 
be effectively used in everyday practice. It is also worth noting, incidentally, that 
the analysis presented in this work is strictly static. A fully dynamic analysis ought to 
consider how the reliability measures are conditionalized on the amount and quality 
of information as it becomes available to the epistemic agents. The δ’s presented 
here, therefore, are just fixed synchronic slices of an evolving parameter. 
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if and only if no other available option has either equal or higher 
overall expected utility20.  

I will now turn to address two concerns that the approach pre-
sented in this article immediately brings to mind. The first, which I 
think is less of a challenge, has to do with the question of how to 
determine the reliability measure of our probabilities. How is it, in 
other words, that we can declare with confidence, given what we 
know, that (say) δ1 > δ2? And the second concern, insinuated before, 
has to do with the question of whether higher reliabilities —appraised 
by whatever means we turn to rely on — do necessarily correspond 
(all other things being equal) to higher expected utilities. As for the 
first question, I believe this version of Bayesianism must be explicitly 
based on a subjective notion of reliabilities (and probabilities), exactly 
like standard Bayesianism is based on subjective probabilities. It is, I 
think, for scientists and engineers, and whoever employs the theory, 
to assess how reliable their probabilities are. And there is in principle 
no constraint on how to specify such subjective measures21. A diffi-
culty though, which also threatens the second-order-probabilities 
approach to the ‘reliability’ of probabilities, is that this opens the door 
to an infinite regress problem: to assess how reliable our measures of 
reliability are, we need a further measure of reliability gauging how 
reliable our measures of reliability are, and so on. All epistemic 
inquiries, however, must stop somewhere, even those of a scientific 
and technological nature — and more so those involving the trivial 
task of buying furniture. And, I think, uncovering how reliable our 
probabilities are looks like a reasonable stopping point. However, 
decision makers under special circumstances may very well be prag-
matically inclined to push further on, and this theory does not pre-
clude them from doing so.  

 
20 There are, of course, different decision criteria for dealing with uncertainty 

and ignorance — like maximin, maximax, minimax regret, Ellsberg’s rule, Levi’s test 
— that transcend the maximizing expected utility rule. In the present theory, 
however, the only fundamental decision criterion that we need, which may indeed 
be supplemented by other decision criteria under special circumstances, is that of 
maximizing overall expected utility. 

21 It is likely, for example, that this subjective assessment of reliabilities will be 
as involved with heuristics and biases as the subjective assessment of probabilities. 
For a famous analysis of the latter case, see Kahneman, Slovic & Tversky 1982. 
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The second problem, I think, is harder to address. It seemed at 
first obvious to me that the more you know about your probabilities, 
the better. However, after presenting the ideas contained in this 
paper to different audiences, it dawned on me that lower δ’s might 
very well correspond to what people often judge as higher expected 
utilities. When asked about whether you prefer to toss a fair coin 
(50% chance of winning) or bet on one of two completely unknown 
horses running against each other (50% chance of winning, for you 
allocate your subjective probabilities symmetrically between these 
two entirely unknown horses), people usually respond: ‘I’d rather bet 
on the horses’, though betting on the fair coin has evidently the 
highest δ22. This result, needless to say, falls short of constituting a 
scientific poll. And I feel reluctant, of course, to draw any conclu-
sions based on anecdotal evidence. However, I find this strange. One 
may be tempted to argue here that rationality is not a descriptive but 
normative concept, and so those who prefer a bet on the horses to a 
bet on the fair coin are acting irrationally23. While I agree with this 
view of rationality24, I find this response unconvincing. Not only 
those who revealed an inclination for betting on the horses were (I 

 
22 This question obviously stipulated — though it would be interesting to see 

how people respond if different money prizes are involved — that both betting on 
the fair coin and betting on one of the horses pays exactly the same: you get your 
money doubled if you win and you lose everything if you lose. And, indeed, it was 
also stipulated that no track record of the horses was available either. 

23 The theory presented in this paper is normative in nature, while it struggles 
to capture what we intuitively associate with a rational choice. At the same time, it 
presupposes that able human beings, as a norm, choose rationally most of the time. It 
is worth pointing out that Gärdenfors’ and Sahlin’s theory, on the other hand, is 
less of a normative decision theory. The measure of epistemic reliability δ is for 
them a reflection of how risk averse — or risk seeking — a decision maker is, 
which determines what probability distributions out of all possible distributions will 
be part of the MMEU process. And this, of course, determines what decision gets 
singled out as the rational choice. In this theory, on the contrary, the measure δ, 
though related to a decision maker’s risk attitude, for she may be more or less 
willing in principle to see epistemic merit in a probability distribution, is viewed 
rather as a subjective measure of how robust probabilities are, given all the available 
data. So the emphasis is not on how agents handle probabilities, but on what 
probabilities dictate to agents. 

24 And, despite the skeptical arguments presented by Broome 2007, I see the 
normativity of rationality as a corollary of the instrumental nature of the latter. 
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venture to say) exemplars of the quintessence of human rationality, but 
also the contention itself that preferring in this case a bet on the 
horses is necessarily irrational is, I think, quite feeble.  

Another plausible response, of course, to this puzzling situation 
may go along the following lines. The reliability measure δ of our 
subjective probabilities over the possible states of the world is a 
relevant factor in the assessment of expected utilities when certain 
pragmatic interests and concerns (such as, for example, keeping our 
families safe, making profits while investing our money, allocating 
very limited resources to scientific projects, designing reliable prod-
ucts and services for the customer) are being pursued but not when 
other pragmatic interests and concerns (such as having an enjoyable 
time while gambling, which does not necessarily imply making the 
most profit) are at stake. While, again, this looks like a plausible 
answer, I think that there is still something a bit unsettling about it. 
Are people in this example really choosing, out of two symmetrical 
options (i.e., the two-sided coin and the two racing horses) the one 
with less reliable probabilities? What if they were asked now 
whether, for equal prizes, they prefer to toss a fair coin or an un-
checked coin? Now all the emotions we associate with horse racing 
are entirely eliminated. Would that make a difference? I am inclined 
to believe that it would — that is, people would rather bet now on 
the fair coin (50% chance of winning, with higher δ) over the un-
checked coin (50% subjective chance of winning, with a lower δ). So, 
perhaps, it is not that people are willing to rationally gamble, given 
two or more options displaying the same probabilities, on that option 
which involves less reliable probabilities, as is the case of one of the 
horses against heads, or tails, of the fair coin, but rather that these 
options are not, to begin with, truly symmetrical: their utilities, 
besides the identical monetary prizes, are not the same.  

It could also be argued here that, in any case, such strange behav-
ior (if, of course, it is to be empirically validated) merely applies to 
situations where all stakes are small. In other words, it could be 
contended that people may occasionally be willing to bet on (say) 
unknown horses rather than a fair coin (all other things being equal) 
simply because there is not much at stake in those situations. Al-
though this remark is, quite likely, true, I think that it does not really 
touch on our problem at this juncture: Can probabilities with lower 
δ’s be rationally preferred (all other things, again, being equal) to the 
same probabilities with higher δ’s? I believe, given the instrumental 
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notion of rationality with which we are dealing here (for which, recall 
from before, the scratching of my finger cannot be of more or less 
import than the destruction of the entire world, as far as rationality is 
concerned), that any positive response, big or small, would certainly 
be of significance. Thus, maybe, even if the example above concern-
ing horse racing and a fair coin is far from conclusive, the question 
still remains whether rationality is necessarily entangled, because of its 
own nature, with higher epistemic reliabilities (all other things, once 
again, being equal). 

I will conclude with a brief description of an ongoing empirical 
study that, in my view, casts this idea into question25. Imagine a 
choice problem identical in all respects to Ellsberg’s famous problem. 
An urn contains 30 red balls and, in unknown proportion, 60 black 
and yellow balls. One ball is taken at random. And you get to choose 
between two possible gambles: (i) you receive $ 10.000 if a red ball is 
taken and nothing otherwise; (ii) you receive $ 10.000 if a black ball 
is taken and nothing otherwise26. We leave here aside the other 
gambles that Ellsberg discusses in his work. The most popular gamble 
between (i) and (ii) among those who volunteer for the test is, fa-
mously, (i). And this is consistent with the idea that, all other things 
being equal, more reliable probabilities are by and large preferred, as 
a matter of fact, over less reliable probabilities.  

Now, let us imagine that we let our volunteers know that the 
name of this game is ‘the biggest loser’, loosely based on the weight 
loss TV show. The immediate goal now is not to win but to lose —
volunteers are asked to make the least money after ten rounds, and 
the biggest loser wins. Remember, once again, that rationality is not 
about the fixation of goals: it is blind as far as they are concerned. A 
choice cannot be deemed irrational on the simple notion that it aims 
at losing rather than winning. What counts is whether it gets us there, 
be that winning or losing. So we ask our volunteers to lose at each of 

 
25 This research is being conducted by Maarten Franssen, Laurens Rook and my-

self among Delft University of Technology students. While Franssen and Rook are 
actively involved in the empirical work and ensuing discussion (forthcoming in 
print), the opinions presented in this paper do not necessarily reflect their views. 

26 It was found that responses followed a much less clear pattern if volunteers 
were asked about money prizes that involved, as in Ellsberg’s original paradox, 
smaller dollar stakes. It must be remembered, however, that $ 100 was not such a 
small stake in the late fifties, when Ellsberg conducted his tests. 
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the ten rounds — as people often lose at games not to embarrass 
friends, or to make their children happy. The subjective probability 
measure defined over the state of the world that corresponds to our 
randomly taking a red ball under gamble (i) is 1/3. And the same 
probability, though with a lower δ (for we have no reasons to believe 
that black and yellow balls are squarely distributed), corresponds to 
the state of the world whereby we randomly take a black ball under 
gamble (ii). This is why gamble (i) is generally preferred to gamble 
(ii)27, and why decision theories usually advise us to prefer the former 
over the latter. But the subjective probability measure defined over 
the state of the world that corresponds to our randomly not taking a 
red ball under gamble (i) is 2/3. And the same probability, but with a 
lower δ, corresponds to the state of the world whereby we randomly 
not pick up a black ball under gamble (ii). So people who play ‘the 
biggest loser’ should still prefer, and most decision theories for 
uncertainty and ignorance — including the one presented in this 
paper — would advise them to do so, gamble (i) over gamble (ii).  

Preliminary results suggest that people who play this game unmis-
takably favour, in their rational attempt to lose, gamble (ii) over gam-
ble (i). That is, they unmistakably favour a bet on a black ball being 
randomly selected over a bet on a red ball being randomly selected. 
This can be either interpreted as suggesting that those persons, despite 
all appearances, are not being truly rational, or that rationality is not 
necessarily accompanied by a taste for higher δ — that is, a taste for 
more reliable probabilities. In other words, empirical results appear to 
suggest that, if we accept that people playing this game are on the 
whole deciding rationally, then rational decisions may occasionally 
favour, all other things being equal, less reliable probabilities. 

Fernando Birman 
Delft University of Technology 

Department of Philosophy 
Delft, the Netherlands 
f.a.birman@tudelft.nl 

 
27 Assuming, of course, that other possible probability distributions concerning 

black and yellow balls (say, 2/3 subjective probability that we randomly take a 
black ball, and 0 subjective probability that we randomly take a yellow ball) have 
still much lower reliabilities. Otherwise, agents may well rationally prefer, as some 
do, gamble (ii) over gamble (i). 
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