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Abstract: The paper considers the use of the bootstrap method to improve the 

determination of confidence intervals identified by the DOE (design of experiment) 

procedure. Two different approaches have been used: one that is appropriate for 

factorial designs and the other one relevant to the methodology of the response 

surface. Both approaches were tested on the real experiment datasets and compared 

with the results obtained from the classical statistical expressions based on well-

known asymptotic formulas derived from the t distribution. 
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1. INTRODUCTION  

Conducting real experiments is usually expensive, while the implementation of 

industrial experiments is extremely expensive. For this reason, since the earliest 

beginnings of modern industry, there has been a natural desire to minimize the costs 

of such experiments. The development of modern science methods in the 19th 

century, and in particular the emergence of the applied statistics, gave industry the 

basic tools necessary to analyze industrial processes; however, they were still very 

simplistic analyzes based on the old One-Factor-At-Time scheme (OFAT), known 

since Galileo, while the interpretations were not very sophisticated and often naive.  

The effective solution to this problem was DOE (the design of experiments) 

methodology, originally developed by Fisher in the 20s and 30s of the 20th century as 

factorial approach (Fisher, 1925; Fisher 1935). In the following years, it was extended 

by Yates (Yates, 1935) to two-level experimental designs, much easier to use and 

analyze than the Fisher’s Latin squares. In the 50s of the 20th century, Box and Wilson 

proposed a new methodology (Box and Wilson, 1951), more appropriate to 

continuous factors than factorial methodology, and named it the response surface 

methodology (RSM). In 1958, Scheffé extended RSM into a special variant 

appropriate for mixtures (Scheffé, 1958), with the constant sum condition i.e. the 

assumption that all factors settings (percentages of mixture components) have to add 
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up to a constant value (usually 100%). In 1959, Kiefer and Wolfowitz, based on 

Kolmogorov's axiomatization, developed a complete generalized theory of DOE 

(Kiefer and Wolfowitz, 1959). DOE has been very successful in industrial applications, 

of which the most spectacular in the American Apollo lunar program. 

However, it should be noted and remembered that the DOE methodology uses 

numerous simplifying assumptions that enable, among others, model parameters 

identification by the least squares method (LSQ) (Wolfberg, 2006). One of the most 

important assumptions is normality, non-bias and additivity of random errors. If this 

assumption is not met, the estimation with LSQ is not correct. Further, the normality 

assumption projects – through the LSQ – onto the resultant estimates and their 

confidence intervals: they are estimated by the asymptotic expressions based on t 

distribution. So, the question arises: what happens when the probability distribution 

does not meet the normality assumption? Three solutions are possible:  

a) a use of traditional methods with a belief that inevitable errors are small, 

b) a use of a preprocessing transformation of data e.g. Box-Cox (Box and Cox, 

1964), 

c) a use of the Monte-Carlo re-sampling scheme based on raw data i.e. the 

bootstrap method (Shao, 1995). 

The first approach is typical for those simple industrial analyzes in which a significant 

margin of error is acceptable or deviations from the normal distribution are of little 

importance. The second approach uses a specially tailored function to transform the 

original data set into one whose distribution is close to the normal distribution. The 

third approach uses the idea proposed by Efron (Efron, 1979), which allows to 

estimate the complete distribution of selected statistics from the data set, although the 

set allows to calculate directly only its single value. The details of this method are 

described in the next chapter. It should be also noted, that an alternative idea, derived 

from other mathematical assumptions, was proposed by Owen (Owen, 2001): non-

parametric maximum likelihood (NPML). 

 

2. METHODOLOGY OF THE BOOTSTRAP 

The main goal is to estimate distribution of the S statistics for the random X variable 

which has the unknown F distribution and may be sampled. The main idea of the 

bootstrap method, which is oriented to achieve this goal, focuses on the following 

steps: 

a) the random X variable is sampled n times and creates the original D dataset, 

b) the D dataset is randomly sampled (with repetitions) n times to create the 

bootstrapped DB dataset, 

c) the S statistics is evaluated for the DB dataset and collected. 

The sequence b-c is iterated as many times as needed until the empirical distribution 

of the collected statistics S reaches the desired smoothness.  

The main assumption of the method is related to sampled values of X taken from the 

F distribution: they have to be independent and identically distributed (i.i.d). In the 

practical applications, the key problem is proper identification of the i.i.d. variable 

inside the mathematical model, because this variable will be the basis of the bootstrap 

procedure i.e. it will be the random variable X from the above description. 

DOE uses two completely different models, a fixed effects model and RSM, although 

in both cases it uses LSQ to determine parameter. Additionally, RSM models may be 

identified over the fixed (nonrandom) or random factor settings. The fixed effects 
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model and the nonrandom RSM may be bootstrapped in the same manner by the 

residual based bootstrap (RB), while the random RSM requires different approach: 

the paired bootstrap (PB). The details are described below. 

 

2.1. Bootstrap in fixed effects model and nonrandom RSM 

The simplest fixed effects model is defined by a following formula (Montgomery, 

2008): 

 

,

ijk ij ijk

i j

y      , (1) 

 

Where: 

y – measurement of the response, µ - mean response, αi,j – effect of i-th factor at j-th 

level (treatment), εijk – random error component at k-th replication. This model 

contains only linear effects i.e. does not include interactions between factors. More 

complicated models include interactions, usually two-way (second order) or three-way 

(third order), while higher order ones are rare.  

The RSM model is defined by a following formula: 

 

1( , , )iy f x x  K , (2) 

 

Where: 

f is virtually any function of quantitative factors x1,…,xi, while ε represents the noise 

observed in the response y (Montgomery, 2008). Usually, due to the possibility of 

applying LSQ, the model includes a function being a linear expression of parameters 

β: 

 

0 1( , , )j j i

j

y f x x     K . (3) 

 

In most problems, the exact form of the relationship between the response and the 

independent variables is unknown. There is also a significant risk that the set of 

independent variables is incomplete and some important factor may be omitted. 

Therefore, the selection of an appropriate function and set of factors is a researcher's 

risk. The random error component ε is the core of a bootstrap procedure i.e. i.i.d. 

element. The bootstrap scheme starts from typical identification of the fixed effect 

model usually by the least squares method. This model and its predictions will be 

used in the subsequent iterations of the bootstrap. Next, residuals are determined as 

deviations between predictions and measurements, and the dataset of residual 

deviations from the average residual is calculated. At this point, the initial operations 

end and the iteration of the bootstrap begins. 

Now, a dataset of bootstrapped measurements is calculated as a sum of the model 

predictions and residuals randomly taken (drawn with repetitions) from the dataset of 

residuals deviations. The bootstrapped measurements are a base for the identification 

of the bootstrapped model. This model is used to determine all required bootstrapped 
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statistics and these statistics are collected. At this point, a single iteration of the 

bootstrap ends, and then the next iteration may begin. 

 

2.2. Bootstrap in random RSM model 

In contrast to the previous models, the i.i.d. component is created by a pair: a point in 

the design space (a combination of all factor settings) and a related measurement. It 

means that the original raw data are directly the source for the bootstrap draw.  

The bootstrap iteration starts from the creation of the bootstrapped data randomly 

taken (drawn with repetitions) from the original raw data. Practically, it means that 

original records are invariant but their replications counters may vary, even reaching 

zero if the record has not been drawn. The bootstrapped model, the general form 

(Eq.2) or the linearized (Eq.3), and its statistics are identified from the bootstrapped 

data, and then collected. 

 

3. RESULTS 

3.1. Fixed effects model – ceramic shell mould of the airfoil blade casting 

The raw data were obtained during investigation of the ceramic shell mould of the 

airfoil blade casting (Szczotok et al., 2015; Pietraszek et al., 2016). The purpose of 

the study was to check if the microstructure is homogeneous. The cross-section of a 

casting were analyzed by SEM to obtain a microstructure data. The images were 

analyzed by an image analysis program and quantitative data were gathered. The 

dataset was created by counting a number and a size of eutectic islands detected at 

six different traces. The one-way ANOVA was selected as a comparing method but 

non-gaussian distribution questioned the desirability of using the classical method i.e. 

assessment of the p value taken from F distribution. Due to the fact that the fixed 

effect model is an integral part of ANOVA, the RB bootstrap of this model was 

chosen. The bootstrap was used to gather full empirical distributions of the six effects. 

Next, this distributions were mutually compared to detect possible significant 

differences from zero i.e. statistical significance of considered effect. If at least one 

effect would be significantly different from zero, it would mean that the cross-section is 

not homogeneous. Fortunately, all effects turned out to be statistically insignificant. 

 

3.2. Random RSM – strength of human vertebrae 

The raw data were obtained during investigation on the development and the 

optimization of diagnosis methods for the estimation risk of fractures in osteoporosis 

based on a three-dimensional images of trabecular bones obtained in vivo 

(Czerwinski et al., 2012). The 23 vertebrae were taken from corpses and tested for 

compression on a universal testing machine. The stress related to 30% compression 

was the measured outcome. The selection of 30% as a threshold value was caused 

by typical compression strain observed during vertebral fracture. 

Due to the natural origin, all tested vertebrae were different. It caused that all 

measurements, data acquired from a computer tomography (CT) before test and the 

stress observed during compression test, should be treated with the PB procedure. 

The procedure was conducted (Pietraszek and Wojnar, 2016) to check the stability of 

results obtained from the classic analysis. The analyzed linear model was dependent 

from three variables related to relative density of a trabecular bone, an average 

number of branches in trabecular bone and an average number of junctions on the 

branches in trabecular bone. The PB bootstrap included determination of distributions 
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for the mean response coefficient and coefficients associated with independent 

variables. The obtained results showed that the empirical distributions of coefficients 

are slightly asymmetrical, and thus their confidence intervals are asymmetrical also. 

 

4. CONCLUSION 

After the carried out investigations, the following conclusions can be drawn: 

 the bootstrap is convenient method to support DOE analysis when non-

gaussian data are met i.e. sample is small or a normality test failed, 

 if controlled factors may be set at fixed values, then the RB bootstrap should be 

used – fixed effect model or RSM with fixed settings, 

 if independent factors are only observed, not controlled, then the PB bootstrap 

should be used – RSM with random settings, 

 the bootstrap approach is very convenient to automatize in computational 

workflow and further statistical postprocessing. 

Similar methods of data-driven analysis i.e. a statistical analysis without additional 

assumption about distribution, may be useful in other areas like e.g. industrial 

management (Maszke et al., 2018), materials science (Weglowski and Osocha, 2009; 

Ulewicz and Novy, 2016), especially supported by an image analysis (Gadek-

Moszczak, 2017; Gadek-Moszczak and Matusiewicz, 2017), even in biomaterials 

(Gadek-Moszczak et al., 2015), hydraulic machines design (Guzowski and Sobczyk, 

2014; Walczak and Sobczyk, 2014) and rolling industry (Sygut et al., 2016). It may be 

also very useful in pharmaceutical and biotechnology industry (Skrzypczak-

Pietraszek, 2016; Skrzypczak-Pietraszek et al., 2018), where phytochemistry 

investigation (Skrzypczak-Pietraszek and Pietraszek, 2009; Skrzypczak-Pietraszek et 

al., 2018) are conducted with a huge random noise from individual differences in plant 

reactions. 
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