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Abstract: The bootstrap method is a well-known method to gather a full probability 

distribution from the dataset of a small sample. The simple bootstrap i.e. resampling 

from the raw dataset often leads to a significant irregularities in a shape of resulting 

empirical distribution due to the discontinuity of a support. The remedy for these 

irregularities is the smoothed bootstrap: a small random shift of source points before 

each resampling. This shift is controlled by specifically selected distributions. The key 

issue is such parameter settings of these distributions to achieve the desired 

characteristics of the empirical distribution. This paper describes an example of this 

procedure. 

Keywords: smoothed bootstrap, statistics, design of experiments, numerical 

simulation 

 

 

 

1. INTRODUCTION  

The typical data analysis performed for a dataset obtained from an experiment uses 

well-known statistical formulas and expressions associated implicitly with many 

assumptions. These assumptions, in contrast, are not well-known. The most often met 

ones are: not very small sample size and a gaussian distribution. The latter allows you 

to provide asymptotic relationships that are convenient to calculate expected values 

and intervals/regions of confidence. The appropriately large sample size enables 

a reliable assessment of the previously assumed normality of the distribution. 

This undoubtedly convenient scheme, however, is often disturbed by the imposed 

limitation of the sample size. The small size of an experimental sample is usually 

caused by resource limitations, the most often financial ones. In such situation, two 

solutions are possible: 

a) a use of traditional analytical expressions with a belief that inevitable errors are 

acceptably small, 

b) a use of the Monte-Carlo re-sampling scheme  based on raw data i.e. the data-

driven bootstrap method (Efron, 1979; Shao, 1995). 

The first approach is often used, because it is schematic, politically safe and can 

always be justified by the argument that "we have always done it in this manner". In 
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the case of more advanced users, the bootstrap method is used more and more often. 

However, these users observed a significant irregularities in shapes of resampled 

distributions, which are caused by discontinuities in  supports of distribution functions. 

These discontinuities are related to the fact that the sampled distribution is created by 

assigning mass to each point of the original data set. This leads to a pair of a density 

function (Fig. 1), that is the sum of the Dirac deltas, and a cumulative distribution (Fig. 

2), that is a compound of several Heaviside's functions (unit step functions). 

 

  
Fig. 1. An example of the simple bootstrap 

density function 

Fig. 2. An example of the simple bootstrap 

cumulative distribution function 

 

The idea of the smoothed bootstrap is to replace the Dirac deltas with distributions 

(Fig. 3) that have limited local supports and allow required smoothness of functions 

(Fig. 4). It means that resampling is not limited strictly to the original dataset, but final 

points, based on sources (and their neighborhoods, in smoothed variant), randomly 

taken from the original dataset may slightly differ from original ones. 

 

  
Fig. 3. An example of the smoothed bootstrap 

density function 

Fig. 4. An example of the smoothed bootstrap 

cumulative distribution function 

An open question is how to choose the type of distribution and its parameters to 

achieve the desired characteristics of the target resampling. 

In the further part of the article, the authors present the selection of parameters of 

deviation distributions for an exemplary dataset. 
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2. DATA AND METHODS 

2.1. Smoothed bootstrap 

The basis of a consideration is the measurement of the quantitative variable X, the 

distribution of which is unknown. Formally, it may be described as sampling of the 

random, one-dimensional and quantitative, variable X from an unknown F distribution. 

The gathered values xi are stored in the dataset D of size n. 

In the simple bootstrap, the empirical distribution Fb, related to the dataset and being 

the source for resampling, is created by putting equal mass 1/n to the each value of 

the dataset i.e. the cumulative distribution function has the following formula: 
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where H is the unit step function i.e. Heaviside’s function. In the smoothed bootstrap, 

the Heaviside's functions, shown in Eq. 1, are replaced by any distributions fi of class 

C1 with density concentrated around the dataset original values, in their nearest 

neighborhood: 
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Efron compared the performances of the smoothed bootstrap resampling from Fsb 

and the non-smoothed bootstrap resampling from Fb using the sample correlation 

coefficient as an example statistics (Efron, 1982), however, he used arbitrary settings 

without deeper analysis.  

In this paper, authors use the normal distribution with individually adjusted standard 

deviation as the smoothing functions i.e. the cumulative distribution function has the 

following formula: 
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where erf is well-known Gauss error function. 

In all bootstrap simulations, the limit of 10000 iterations was set. 

 

2.2. Comparison criteria 

The basis of a consideration is the measurement of the quantitative, one-dimensional 

variable X. The bootstrapped statistics is mean calculated from triplicates and bounds 

of its 95% confidence interval. Additionally, the maximum gap between neighboring 

resampled values is identified. Based on the median and range of variation, 

a modified coefficient of variation was calculated. 

 

2.3. Source dataset 

The source data were taken from the biotechnological investigation conducted on 

enhanced accumulation of harpagide and its derivatives in in vitro cultures of Melittis 

melissophyllum plant (Skrzypczak-Pietraszek et al., 2018). The investigation was 

done as a designed experiment with four controlled factors: harvesting time and 

possible supplementation of three different chemical additives. The volumetric density 

of harpagide in biomass was an observed outcome. The measurements were done in 

triplicate for each treatment.  
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This article uses data from a publicly available dataset attached to the article 

(Skrzypczak-Pietraszek et al., 2018a). For further analysis, the record (26.9, 23.5, 

21.6) was used, with gaps between values (3.4, 1.9), respectively. 

 

3. RESULTS 

3.1. Classic mean and 95% confidence interval estimation 

The classic, well-known formulas were used to estimate mean and 95% confidence 

interval bounds. The result was mean 24.0 and 95% confidence interval (17.33, 

30.67). 

 

3.2. Simple bootstrap 

The record (26.9, 23.5, 21.6) was a base dataset for the simple bootstrap. 

Theoretically, this dataset may lead to 33 i.e. 27 different combinations, but only 10 

different mean values are available, due to the neutrality of permutation to the 

statistics value. This values are as following: 21.60, 22.23, 22.87, 23.37, 23.50, 24.00, 

24.63, 25.13, 25.77, 26.90. The maximum gap 1.13 is between 25.77 and 26.90. As 

a result, the histogram is either coarse (Fig. 5) or full of holes (Fig. 6). It is not possible 

to reliably determine the bounds of the confidence interval. 

 

  
Fig. 5. The coarse histogram with bin size 

equal 1 

Fig. 6. The histogram with bin size 0.5 

 

3.3. Smoothed bootstrap 

The record (26.9, 23.5, 21.6) was a base dataset for the smoothed bootstrap. All 

standard deviations si (see Eq.3) were set at the same values. Seven variants were 

simulated at si values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The limit of bootstrap iterations 

was set at 10000. The mean and bounds of its 95% confidence intervals were 

calculated. Additionally, the maximum observed gap between resampled values was 

identified.  

The results are presented in Table 1. The histograms for s = 0.1 and s = 0.4 are 

presented in Fig.7 and Fig.8. Variation of the confidence intervals bounds are shown 

in Fig.9 and Fig.10. Variation of the estimated mean, confidence interval bounds and 

the maximum gap is presented in Table 2. 
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Table 1  

Results gathered from numerical simulations of the smoothed bootstrap (s – standard 

deviation for smoothing, mean – mean of resampled triplicates, ±95%CI – bound of confidence 

interval, max gap – maximum observed distance between neighboring resampled values) 

 

s mean -95%CI +95%CI max gap 

0.1 21.63 24.01 26.88 0.81 

0.2 21.66 23.99 26.86 0.36 

0.3 21.69 24.01 26.80 0.09 

0.4 21.70 24.03 26.84 0.06 

0.5 21.69 24.00 26.73 0.14 

0.6 21.65 24.00 26.71 0.13 

0.7 21.60 24.00 26.74 0.11 

 

  
Fig. 7. The histogram for s = 0.1 Fig. 8. The histogram for s = 0.4 

 

  
Fig. 9. The -95% bound for confidence 

interval 

Fig. 10. The +95% bound for confidence 

interval 

 

0 0.2 0.4 0.6 0.8

s

21.56

21.60

21.64

21.68

21.72

-9
5

%
C

I

0 0.2 0.4 0.6 0.8

s

26.68

26.72

26.76

26.80

26.84

26.88

26.92

+9
5

C
I



721                                                                                                                                                     Production engineering 

  
Fig. 11. Maximum gap in smooth bootstrap Fig. 12. Inverse cumulative functions used in 

the simple bootstrap (step function, black) 

and the smoothed bootstrap with s = 0.4 

(curved, red) 

Table 2  

Variation of the mean statistics, confidence interval bounds and maximum gap in the 

smoothed bootstrap simulations (variability of the standard deviation si from 0.1 to 0.7) 

 mean -95%CI +95%CI max gap 

minimum 23.99 21.60 26.71 0.06 

maximum 24.03 21.70 26.88 0.81 

range 24.00 21.66 26.80 0.13 

median 0.04 0.11 0.18 0.75 

range/median 0.15% 0.48% 0.65% 572% 

 

4. DISCUSSION 

As can be seen from the results obtained, the value of the standard deviation, used to 

the smooth bootstrap simulations, did not significantly affect the estimated mean and 

bounds of the confidence interval. The use of the method itself was significant, not the 

specific value of the standard deviation parameter. It means that the transition of 

a cumulative distribution function from the C0 class to the C1 class is important. 

However, the different behavior was in the case of the shape of the distribution. The 

value of the standard deviation significantly changed the shape of the distribution 

histogram, so the parameter value selection may be important for the value generator 

for simulation purposes. 

 

5. CONCLUSION 

After the carried out investigations, the following conclusions can be drawn: 

 the smooth bootstrap significantly improves estimation results compared to the 

simple bootstrap, 

 the value of the standard deviation parameter responsible for smoothening the 

distribution is not important; it is important to change the function class from C0 to 

class C1, 

 further work should check whether the shape of the additional distribution matters – 

the normal distribution is computationally expensive. 
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Smooth bootstrap, as the example of data-driven analysis i.e. a statistical analysis 

without additional assumption about distribution, may be useful in other areas like e.g. 

industrial management (Maszke et al., 2018), materials science (Pietraszek and 

Gadek-Moszczak, 2013; Ulewicz and Novy, 2016, Ulewicz et al., 2016; Dudek et al., 

2017; Pietraszek et al., 2017; Jambor et al., 2018; Radek et al., 2018), especially 

supported by an image analysis (Gadek-Moszczak, 2017; Gadek-Moszczak and 

Matusiewicz, 2017), even in biomaterials (Gadek-Moszczak et al., 2015), hydraulic 

machines design (Pobedza and Sobczyk, 2013a; Pobedza and Sobczyk, 2013b; 

Guzowski and Sobczyk, 2014; Walczak and Sobczyk, 2014) and corrosion protection 

(Klimecka-Tatar, 2016). It may be also very useful in power industry (Dwornicka, 

2014), chemical industry (Ulewicz and Radzyminska-Lenarcik, 2014; Gnatowski et al., 

2018) or pharmaceutical and biotechnology industry (Skrzypczak-Pietraszek, 2016; 

Skrzypczak-Pietraszek et al., 2018b), where phytochemistry investigation 

(Skrzypczak-Pietraszek and Pietraszek, 2009; Skrzypczak-Pietraszek et al., 2017) are 

conducted with a huge random noise from individual differences in plant reactions. 
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