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INTRODUCTION 

The percent total alkaloids of flue-cured tobacco is an 
important quality factor. Accurate methods have been 
reported for estimating the total alkaloids in tobacco 
samples (1, 3, 4, 5, 8, Sa). However, these methods are 
destructive, slow in most cases, and involve tedious 
chemical extraction procedures. Development of a 
simple, rapid, reliable and non-destructive technique for 
measuring total alkaloids will greatly benefit the to­
bacco industry. 
Several researchers have demonstrated the potential of 
computerized spectrophotometry for rapidly meas­
uring the chemical composition and quality of agricul­
tural products. Birth (2) determined the chlorophyll 
content of peaches, detected alternaria in oranges, and 
established a quality index for pork. Norris and Barnes 
{10} developed prediction equations for crude protein, 
neutral detergent fiber, acid detergent fiber, and lignin 
in grains and forages. Shenk et al. (12) measured the 
composition of forage diets and predicted the animal 
response to the diets. McClure et al. (9) developed pre­
diction equations for total reducing sugars in tobacco. 
Finney and Norris (6} established the feasibility of 
measuring moisture in corn kernels. 
The absorption spectra of a product contain much infor­
mation about the chemical constituents and their con­
centrations in a multicomponent system. Traditionally, 
if one has an n-component mixture, he can measure n 
absorption peaks and solve a system of n simultaneous 
equations. In fact, the accuracy can be increased by 
overdetermination, i.e. analyzing more than n data 
points. Because of the computational complexity, the 
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classical "overdetermined" problem was limited to a 
few extra points. Advancement of computer technol­
ogy in recent years has made it possible to have dedi­
cated computers for spectral data retrieval and analysis. 
An on-line computer can greatly facilitate the analysis of 
a multicomponent system. The computer can process the 
digitized spectra and find the wavelengths at which the 
spectral data will best correlate with a constituent of a 
multicomponent system. The power of a computerized 
spectrophotometer lies in the fact that thousands of 
data points can be acquired and analyzed in a short 
period of time. 
The theory of compositional analysis of biomaterials 
by computerized spectrophotometry has been discussed 
by Hamid (7). Briefly stated, the concentration C of a 
given chemical constituent can be related to a measured 
optical parameter P as follows: 

~ 
C= Ko + ~ K;Pl. 

i-1 I 

[1] 

where Ko is the constant term, K; is the experimentally 
determined coefficient of the ith term, Px; is the magni­
tude of the optical parameter at the wavelength A.; , and 
I. is the number of terms in the prediction equation. 
P may be log (11R), d RI R d A., d1 (log {11R)) Id A.1 or 
any other optical parameter which is related to the 
chemical constituent under study. Reflectance R is defin­
ed as the ratio of the detector signal of the sample to 
the detector signal of the ceramic standard in the reflec­
tance mode (7, 9). A general stepwise multiple linear 
regression (called GSMLR} has been developed (7) to 
determine the functional relationship between concen­
tration and one of the above optical parameters. This 
program considers all the wavelengths at which the 
spectra were encoded and GSMLR selects the wave­
lengths at which P best correlates with C. At every step 
of regression the P entering the regression will be the 
one which has the highest partial correlation with C. 
The program will continue adding terms until the desir­
ed accuracy is achieved. 
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MA TE:R.IALS AND METHODS 

A total of 135 independent samples of cured tobacco 
were selected to provide a range of total alkaloids from 
approximately 0.5 °lo to 6.5 °lo. All samples were pul­
verized in a Wiley mill with a U.S. 40 screen. Total 
alkaloid analyses (8} were made by the Tobacco Chem­
istry Laboratory (North Carolina State University, 
:R.aleigh, North Carolina). The samples were split into 
two groups according to their odd or even sample num­
bers. The 68 odd-numbered samples were used to devel­
op the calibration equation whereas the 67 even-num­
bered samples were used to test the calibration equation. 

Two grams of each sample were loaded into a Technicon 
solid sample container with a quartz window. The re­
flectance spectrum, from 1.0 to 2.6 !1Jll, of each sample 
was recorded on a computerized spectrophotometric 
system (7). A specially prepared flat white ceramic disc, 
which has a flat reflectance curve over the visible near­
infrared region, was used as a reflectance standard. 
The bandpass of the monochromator was fixed at 7.0 
nm. The spectra were scanned at 10 nm/s. Reflectance 
readings were recorded at wavelength intervals of 1.0 
nm providing 1600 digitized data points which were 
stored on cassette tapes for further analysis. Each data 
point was the average of 100 readings. This technique 
was employed to improve the signal-to-noise ratio of 
the spectrophotometric system output. Each reflectance 
spectrum, consisting of 1600 digitized data points, was 
stored on cassette tapes for further analyses. 

DATA PROCESSING 

Three additional optical parameters were calculated 
from the reflectance spectra. These were: [ 1] log (11R}, 
(2] d RI R d A and (3] d2 (log (11R)} Id A2. Calculation 
of these parameters was as follows (7): 

1. A twenty-five points least-squares polynomial smooth­
ing was followed by the calculation of log (11R). 

2. A twenty-five points least-squares polynomial smooth­
ing was followed by the calculation of the 25-point 
quadratic first derivative, and dividing the result by 
the smoothed reflectance. 

3. A twenty-one points moving point average smooth­
ing was followed by calculation of 21-point second 
derivative by linear interpolation. 

In each of the above three cases the spectra were com­
pressed to approximately 550 data points. The exact 
number of data points depended on the type of data 
processing used in the transformation. The transformed 
spectra were stored on separate .cassettes for further 
analyses. 
The stepwise multiple linear regression program, 
GSMLR (7), was run for each of the three optical para­
meters, i.e. log (11R), d RI R d A, and d2 (log (11R)) I 
d A2• A maximum of fifteen steps were allowed by the 
regression procedure. The F value for entry and deletion 
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of a variable was 3.0. Each step of regression would 
either add a variable to the regression equation or re­
move the one from the set of variables already included. 
Samples which produced residuals greater than twice 
the standard error of regression could be eliminated 
from the data set. 

RESULTS AND DISCUSSION 

Log (11R) and d RI R d A spectra of a typical tobacco 
sample with 3.1 0/o total alkaloids are plotted in Fig. 1. 
The log (1/R) spectrum looks much like an absorption 
spectrum [log (1/T)] in that the peaks signify the pres­
ence of an absorber. For example, the most prominent 
absorber in the tobacco of Fig. 1 is water which exhibits 
absorption peaks at 1.94, 1.45, and 1.19 flm. The slight 
shift of the 1.45 water band toward longer wavelengths 
is probably due to overlapping absorbers. Absorption 
bands also occur in the log (11R) curve at 1.725, 2.145, 
2.31, 2.345, and 2.5 flm. These points can be easily 
identified from the first derivative curve by simply 
noting the points where d R I R d A changes from nega­
tive to· positive. 
There are overlapping bands in the log (11R) curve, and 
these overlapping bands are better resolved in the deriva­
tive spectrum. As can be seen in Fig. 1, in the vicinity 
of an absorption band the first derivative spectrum has 
two peaks, one corresponding to the maximum positive 
slope of the absorption band and the other correspond­
ing to the maximum negative slope. Positive peaks in 
the d R I R d A spectrum occur at the maximum nega­
tive slope of the log (1/R) spectrum and negative peaks 
occur at the maximum positive slopes. The first deriva­
tive is zero at absorption maxima and minima. 
Fig. 2 shows the log (11R) and d2 (log (11R)) I d A2 spec­
tra of the same tobacco as in Fig. 1. Note that a nega­
tive peak occurs in the second derivative spectrum at 
the absorption maxima and a positive peak at absorption 
minima. The second derivative is zero at the points of 
inflection in the log (11R) curve. Minima in the second 
derivative curve (Fig. 2) clearly indicate the same ab-

Figure 1. Log (1/R) and d RI R d i.. spectra for a 3.1 % 
total alkaloid tobacco sample. 
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Figure 2. Log (11R) and d2 (log (11R)) I d 'J..I spectra of a 
3.1 OJo total alkaloid tobacco sample. 
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sorbers as were found in the first derivative spectrum. 
There are two notable exceptions. First, the band at 
1.45 !J.1ll does show the presence of overlapping absorb­
ers. Second, although some of the maxima or minima 
are "hidden" in log (liR) curve, they are indic_ated in 
the second derivative curve. Furthermore, since the sec­
ond derivative process is rriore "noisy'" than the first 
derivative, some of the minima, particularly in the 
region between 2.4 and 2.6 !J.lll, may be the result of 
noise due to low detector sensitivity in this region. 
The constants for the calibration equations for the three 
optical parameters [log (11R), d R I R d A, and d2 (log 
(11R)) I d J..2] as developed by the stepwise multiple 
linear regression program, GSMLR, are given in Table 1. 
The data in Table 1 should be interpreted as follows: 

4 
0loTA = Ko + l: Ki PAi , [2] 

i-1 

where Olo TA is the percentage total alkaloids, Ko is the 
intercept, Ki is the coefficient of the ith term in the 
equation, PAi is the magnitude of the optical parameter 
selected for the ith term and corresponding to wave­
length Ab and 4 is the number of terms in the regression 
equation. 
The equations for log (11R) and d R I R d A. contained 
nine terms while the equation .for d2 (log (1IR)) I d J..2 
contained 13 terms. d R I R d A. gave slightly better· re­
sults [se* = ± 0.2596] than log (1IR) [se.,;. ± 0.2801]. 
The d2 (log (11R)) I d J..2 [se = ± 0.1695] was indicated 
a better parameter than either log (11R) or d RI R d A.. 

Figures 3, 4 and 5 show, respectively, the log (11R), 
d R I R d A., and. d2 (log (11R)) I d J..2 spectra of two 
samples of tobacco, one containing 0.78 Olo and the other 
containing 6.07·o1o total alkaloids. While the two curves 
in each of the figures exhibit similarities and dissimilar­
ities, it is difficult by the visual inspection to associate 
the differences with alkaloid levels at various wave­
lengths. The wavelengths selected by GSMLR are mark­
ed on the curves; the numbers on the markings indicate 
the order in which they were selected. ' 

• se = standard error of calibration. 

Figure 3. Log (11R) spectra of two tobacco samples of 
different levels of total alkaloids. 
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Figure 4. d R I R d 'J.. spectra of two samples of tobacco 
of different levels of total alkaloids. 
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Figure 5. d2 (log (t/R)) I d 'J..1 spectra of two tobacco 
samples of different levels of total alkaloids. 
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By superposmon the spectrum of a tobacco sample is 
made up of the spectra of the individual constituents 
contained in the sample (9). Therefore, one would 
expect the stepwise multiple linear regression procedure 
to pick wavelengths, at least the initial one or two 
wavelengths, which would have a direct relationship to 
the particular constituent under study. As can be seen 
in Table 1, GSMLR picked approximately 1.66 J.l.m as 
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the initial wavelength for all three parameters. The 
spectrum of nicotine in carbontetramloride has a com­
plex absorption band between 1.6 and l.81J.m (13). Thus, 
it appears that the initial wavelength is directly asso­
ciated with the major alkaloid absorption. While it is 
intuitively assumed that the moice of other wavelengths 
were made to correct for the presence of other absorb­
ers, these moices cannot be verified at this time. 

The real test of a calibration equation is its ability to 
predict a memical constituent in an independent set 
of samples. A prediction program, PRED (7), was used 
to predict total alkaloids in even samples with calibra­
tion equations containing different wavelengths. The 
coefficient of determination (r2) and standard error of 
calibration (se) given by GSMLR as well as standard 
error of prediction (sp) given by PRED are listed in 
Table 2 along with the wavelengths in the 'calibration 
equation. The following observations can be made from 
Table 2: 

1. The d2 (log (11R)) I d A2 gave the best results while 
d RI R d A gave better results than log (1IR) equa­
tions. 

2. The prediction standard error was generally larger 
than the calibration standard error. 

3. The prediction error did not always decrease with 
additional wavelengths. For both log (11R) and 
d R I R d A, the prediction error decreased up to 
5 wavelengths and then increased consistently with 
additional wavelengths. For d2 (log (1/R)) I d A2, it 
did not follow the same pattern. However, the mini­
mum error of 0.438 was obtained for 10 wave­
lengths after whim it increased consistently. 

These results indicate that calibration equations should 
be evaluated carefully. A calibration equation devel­
oped from a small set of samples may not be equally 
good for an independent set of data, and a calibration 
equation containing too many wavelengths may not 
necessarily be a better prediction equation. Similar 
results were reported by Shenk et al. (12) for the com­
positional analysis of forages. 

It is not obvious why the standard error jumps up or 
down up to 9 wavelengths for d2 (log (11R)) I d A2: Two 
possible explanations can be given for this phenom­
enon. First the second derivative is very sensitive to 
noise. Since the log (11R) spectrum contained significant 
amount of noise at the lower and upper extremes, due 
to the low sensitivity of the detector, some noise was 
carried over to the second derivative spectrum even after 

. smoothing the data. Secondly, the second derivative 
has very sharp peaks and effects of compressing the 
curves will be more severe in this case whim means that 
the wavelengths selected by the GSMLR might have 
been ± 1 nm off the optimum wavelengths. 

Based on the discussion in the previous paragraph, the 
optimum prediction equations for the three quantitative 
parameters are given in Table 3. Again the prediction 
equations should be interprt!ted according to equation 2. 

Figure 6. Predicted values of total alkaloids plotted vs. 
chemistry values. 
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Results of prediction on 67 even samples using the best 
prediction equation [the one given for d2 (log (11R)) I 
d A2 ] are shown in Fig. 6. 

Deviations between the memistry values and predicted 
values can be attributed to three sources: anomalies of 
memical methods (measuring irregularities), instrument 
noise and sample preparation. To evaluate the magnitude 
of errors due to instrument noise, a tobacco sample with 
3.1 Olo total alkaloids was packed in the sample holder 
and 20 spectra were run on the same sample. The 
standard deviation between the predicted values of 
total alkaloids was 0.21 Olo. The experiment was repeated 
by packing and unpacking the same sample to evaluate 
the errors associated with sample preparation and instru­
ment noise. Surprisingly, the standard deviation of pre­
dicted values was 0.17°lo. Normally, one would expect 
this number to be larger than 0.21 Olo. This can be ex­
plained by the negligible errors associated with sample 
preparation and a large error associated with the variance 
estimate. McClure et al. (9) reported 50 °lo errors due 
to sample preparation for sugars. In their case, the 
samples were prepared by pouring a subsample into a 
stainless steel cup and smoothing the surface with a flat 
stapula whim could explain the errors associated with 
sample preparation. 

Thus 0.19 °lo (average of 0.17 and 0.21) error can be 
attributed to the instrument noise whim is approxima­
tely 43 °lo of the total prediction error. The other 57 Olo 
of the deviations may be attributed to variations of the 
memical methods. 
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CONCLUSIONS 

This paper discusses the potential of a computerized 
near-infrared spectrophotometer for compositional ana­
lysis of total alkaloids in cured tobacco samples. 
Reflectance spectra were recorded for 68 samples with 
a total alkaloids range of 0.78 to 6.1 °/o. Three quanti­
tative parameters, log (1/R), d RI R d l. and d2 (log 
(liR)) Id },2 were investigated. Spectral data were cor­
related with chemical analyses of total alkaloids using 
the method proposed by Harvey et al. (8). It was found 
that d RI R d l. was a better quantitative parameter 
than log (1/R) and d2 (log (1/R)) I d },2 was found better 
than either the log (1/R) or d RI R d l.. 
While the standard error of calibration decreased with 
additional wavelengths in the calibration equation, it 
was- found that the standard error of prediction might 
actually increase with additional wavelengths after a 
certain number of wavelengths have been added in the 
calibration equation. The optimum prediction equations 
for both log (1/R) and d RI R d l. contained 5 wave­
lengths, The best prediction equation was found for 
d2 (log (1/R)) Id },2 which contained 10 wavelengths and 
dropped the standard error of prediction to 0.438 Olo. 
Instrument noise was found to contribute about 43 Olo 
of variation; the remainder was attributed to the 
variations of the chemical methods. 
Thus, it can be concluded that the computerized spec­
trophotometer has potential for compositional analysis 
of complex biomaterials. However, the technique should 
be used with caution. Equations developed on calibra­
tion samples should be evaluated carefully on an inde­
pendent set of data. Furthermore, the technique is pure­
ly empirical and strictly correlative. The accuracy of its 
prediction cannot exceed the accuracy with which the 
calibrating samples are analyzed. Utility of equations 
developed will heavily depend on the calibrating sam­
ples and hence the calibrating samples should be selected 
carefully and should include evenly distributed samples 
over the entire range of composition. The prediction 
~uations should not be used outside this range. 
Equations developed by the computerized spectropho­
tometers can be used to build economical filter instru­
ments for contacdess monitoring of composition of bio­
materials. Thus the computerized spectrophotometer has 
great potential in the field of quality and composition 
of biomaterials. 

SUMMARY 

This paper illustrates the potential of a computerized 
spectrophotometer for measuring total alkaloids in to­
bacco. Prediction equations were developed for three 
optical parameters. Of the three parameters investigated 
d2 (log (1/R)) Id },2 gave the best results and d RI R d l. 
gave better results than log (1/R), where reflectance 
R is the ratio of the detector signal of the sample 
to the detector signal of the ceramic standard in the 
reflectance mode. The coefficient of determination r2 

for the prediction equation containing d2 (log (1/R}) Id },2 

terms at 10 different wavelengths was 0.975. This 
equation predicted the total alkaloids in an independent 
set of samples with a standard error of 0.438 %. Instru­
ment noise contributed 43 Olo of the variation, the 
remainder was attributed to anomalies of the chemical 
methods. 

ZUSAMMENF ASSUNG 

Die vorliegende Arbeit veranschaulicht das Leistungs­
vermOgen eines rechnergesteuerten Spektrophotometers 
bei der Messung der Gesamtalkaloide im Tabak. Fi.ir 
drei optische Parameter wurden Gleichungen zur Vor­
aussage entwickelt. Die Untersuchung der Parameter 
zeigte, daB d R I R d l. zu bessercn Ergebnissen fUhrte als 
log (11R) und daB mit d2 (log (1/R)) Id },2 die besten Re­
sultate erzielt wurden, wobei der Reflexionswert R das 
Verh1iltnis vom Detektorsignal der Probe zum Detektor­
signal des Keramikstandards, gemessen als Reflexion, 
darstellt. Bei der Gleichung zur Voraussage mit Termen 
des Typs d2 (log (1/R)) Id },2 belief sith der Bestimmungs­
koeffizient r2 bei zehn versch.iedenen Wellenl1ingen auf 
0,975. Diese Gleichung sagte den Gehalt an Gesamt­
alkaloiden einer unabh1ingigen Me6reihe mit einem min­
leren Fehler von 0,438 Olo voraus. Das Geriiterauschen 
trug mit 43 Ofo zur Schwankung bei, der Rest wurde Un­
gleichmii.Bigkeiten der chemischen Verfa~ren zugeschrie­
ben, 

R£SUM£ 

Cet expose demontre les capacites d'un spectrophoto­
mCtre branche sur un micro-processeur dans la deter­
mination des alcaloides totaux du tabac. Des equations 
de prediction ont ete etablies pour trois paramhres 
optiques. L'examen de ces trois parametres a rCvelC que 
les rCsultats de d R I R d l. soot sup&ieurs a ceux de 
log (liR), et que les meilleurs rCsultats sont obtenus 
avec d2 (log (1/R)) I d }.2. La valeur de rCflexion R re­
prCsente le rapport entre le signal dCtecteur de l'echan­
tillon et le signal dCtecteur de l'etalon de ceramique, 
mesurCs en reflexion. Pour !'equation de prediction avec 
des termes du type d2 (log (1/R)) Id },2, le coefficient de 
determination r2 etait de 0,975 a dix differentes lon­
gueurs d'onde. Cette equation permettait de predire la 
teneur en alcaloides totaux dans une serie d'&:hantillons 
independants avec une erreur moyenne de 0,4380io. Le 
430/o de la variation erait imputable au bruit de fond 
de !'instrument, le reste a ere attribue a la variation des 
mCthodes chimiques. 
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