Pressure and Gas Flow Distribution Inside the Filter of a Non-Filter Ventilated Lit Cigarette During Puffing

Open access

Summary

Establishing a realistic gas flow velocity distribution inside a cigarette filter during smoking is important to understand filtration mechanisms of different mainstream smoke species and the overall effect of filter designs on mainstream smoke composition. In this paper, an experimental method is described which directly measures the gas pressure field inside a cellulose acetate filter during cigarette smoking. This was demonstrated by using 3R4F research reference cigarettes smoked under a 35 mL puff of 6 s duration. In addition, filter temperature measurements were also carried out at multiple locations within the filter. Both the temperature and pressure sensing locations were selected to match the radial and longitudinal directions of the cigarette filter. The temperature and pressure measurements were then used to calculate the velocity according to Darcy’s Law along the mainstream flow direction in the cigarette filter at each puff. The spatially resolved maps of temperature, pressure and flow velocity on a puff-by-puff basis provide useful insights into the dynamic filtration of smoke aerosol under the influence of the approaching burning coal and progressive accumulation of smoke particulate matter.

1. Norman, A.: Cigarette Design and Materials; in: Tobacco: Production, Chemistry and Technology, edited by D.L. Davis and M.T. Nielsen, Blackwell Science, Oxford, UK, 1999, pp. 353–387.

2. Fuchs, N.A. and I.B. Stechkina: A Note on the Theory of Fibrous Aerosol Filters; Ann. Occup. Hyg. 6 (1963) 27–30. DOI: 10.1093/annhyg/6.1.27

3. Keith, C.H.: Pressure Drop-Flow Relationships in Cigarette Filter Rods and Tobacco Columns; Beitr. Tabakforsch. Int. 11 (1982) 115–121. DOI: 10.2478/cttr-2013-0505

4. Keith, C.H.: Physical Mechanisms of Smoke Filtration; Rec. Adv. Tob. Sci 4 (1978) 25–45.

5. Keith, C.H.: Experimental and Theoretical Aspects of Cigarette Smoke Filtration; American Chemical Society Symposium Series 17 (1975) 79–90. eISBN: 9780841202351

6. Keith, C.H. and J.C. Derrick: Cigarette Filter Efficiency as Measured with a Homogeneous Solid Aerosol; Tob. Sci. 9 (1965) 116–120.

7. Overton, J.R.: Filtration of Cigarette Smoke: Relative Contributions of Inertial Impaction, Diffusional Deposition, and Direct Interception; Beitr. Tabakforsch. 7 (1973) 117–120. DOI: 10.2478/cttr-2013-0319

8. Duke, M.G.: Predicting the Efficiency of Cigarette Filters; Filtr. Separat. (1986) 358–366.

9. Morie, G.P., C.H. Sloan, and M.S. Baggett: Parameters Affecting the Selective Filtration of Certain Tobacco Smoke Components; Beitr. Tabakforsch. 8 (1975) 145–149. DOI: 10.2478/cttr-2013-0371

10. Baggett, M.S. and G.P. Morie: Selective Removal of Semivolatile Components of Cigarette Smoke by Various Filters; Beitr. Tabakforsch. 8 (1975) 150–152. DOI: 10.2478/cttr-2013-0372

11. Branton, P.J., K.G. McAdam, D.B. Winter, C. Liu, M.G. Duke, and C.J. Proctor: Reduction of Aldehydes and Hydrogen Cyanide Yields in Mainstream Cigarette Smoke Using an Amine Functionalised Ion Exchange Resin; Chem. Cent. J 5 (2011) 5–15. DOI: 10.1186/1752-153X-5-15

12. Branton, P.J., K.G. McAdam, M.G. Duke, C. Liu, M. Curle, M. Mola, C.J. Proctor and R. Bradley: Use of Classical Adsorption Theory to Understand the Dynamic Filtration of Volatile Toxicants in Cigarette Smoke by Active Carbons; Adsorpt. Sci. Technol. 29 (2011) 117–138. Available at: http://journals.sagepub.com/doi/pdf/10.1260/0263-6174.29.2.117 (accessed March 2017) DOI: 10.1260/0263-6174.29.2.117

13. Borgerding, M. and H. Klus: Analysis of Complex Mixtures – Cigarette Smoke; Exp. Toxicol. Pathol. 57 (2005) 43–73.

14. Hoffmann, D. and I. Hoffmann: The Changing Cigarette: Chemical Studies and Bioassays; Smoking and Tobacco Control Monograph 13 (2001) 159–192. DOI:10.1093/acprof:oso/9780199566655.003.0006

15. Baker, R.R.: Smoke Chemistry; in: Tobacco: Production, Chemistry and Technology, edited by D.L. Davis and M.T. Nielsen, Blackwell Science, Oxford, UK, 1999, pp. 398–439.

16. Browne, C.L., C.H. Keith, and R.E. Allen: The Effect of Filter Ventilation on the Yield and Composition of Mainstream and Sidestream Smokes; Beitr. Tabakforsch. Int. 10 (1980) 81–90. DOI: 10.2478/cttr-2013-0473

17. Colard, S., T. Verron, R. Julien, X. Cahours and S.W. Purkis: Relationship between Cigarette Yields and Smoking Time under Different Machine Smoking Regimes; Beitr. Tabakforsch. Int. 26 (2014) 4–18. DOI: 10.2478/cttr-2014-0003

18. Bernstein, D.M.: A Review of the Influence of Particle Size, Puff Volume, and Inhalation Pattern on the Deposition of Cigarette Smoke Particles in the Respiratory Tract; Inhal. Toxicol. 16 (2004) 675–689. DOI: 10.1080/08958370490476587

19. Baker, R.R. and L.S. Lewis: A Review of the Incidence and Consequences of Cigarette Filter Vent Blocking Among Smokers; Beitr. Tabakforsch. Int. 19 (2001) 209–228. DOI: 10.2478/cttr-2013-0709

20. Baker, R.R., M. Dixon, and C.A. Hill: The Influence and Consequences of Filter Vent Blocking Amongst British Smokers; Beitr. Tabakforsch. Int. 18 (1998) 71–83. DOI: 10.2478/cttr-2013-0672

21. Purkis, S.W., C. Mueller, M. Intorp, and H. Seidel: The Influence of Cigarette Designs and Smoking Regimes on Vapour Phase Yields; Beitr. Tabakforsch. Int. 24 (2010) 34–46. DOI: 10.2478/cttr-2013-0879

22. Wen, J.H., W. Du, B. Peng, X.B. Zhang, F.W. Xie, H.M. Liu, and Z. Kejun: Filtration and Retention Characteristics of Smoke Components in Filters; Beitr. Tabakforsch. Int. 26 (2014) 121–131. DOI: 10.2478/cttr-2014-0015

23. Du, W., J.H. Wen, B. Peng, X.B. Zhang, F.W. Xie, H.M. Liu, and K.J. Zhong: An Improved Theoretical Model of Cigarette Smoke Filtration across Mono-Segment Cellulose Acetate Filters; Beitr. Tabakforsch. Int. 26 (2015) 232–240. DOI: 10.1515/cttr-2015-0011

24. Li, B., L.C. Zhao, C.F. Yu, C. Liu, Y. Jing, H.R. Pang, B. Wang, and K.G. McAdam: Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette; Beitr. Tabakforsch. Int. 26 (2014) 191–203. DOI: 10.1515/cttr-2015-0007

25. Li, B., H.R. Pang, L.C. Zhao, B. Wang, C. Liu, K.G. McAdam, and D.S. Luo: Quantifying Gas-Phase Temperature Inside a Burning Cigarette; Ind. Eng. Chem. Res. 53 (2014) 7810–7820. DOI: 10.1021/ie5009822

26. MathWorks: Interpolation for 2-D Gridded Data in Meshgrid Format. Available at: http://www.mathworks.com (accessed March 2017)

27. Baker, R.R.: Gas Velocities inside a Burning Cigarette; Nature 264 (1976) 167–169. DOI: 10.1038/264167b0

28. Li, B., L.C. Zhao, L. Wang, C. Liu, K.G. McAdam, and B. Wang: Gas-Phase Pressure and Flow Velocity Fields Inside a Burning Cigarette During a Puff; Thermochim. Acta 623 (2016) 22–28. DOI: 10.1016/j.tca.2015.11.006

29. Lee, S., S.K. Lele, and P. Moin: Eddy Shocklets in Decaying Compressible Turbulence; Phys. Fluids 3 (1991) 657–664.

30. International Organization for Standardization (ISO): International Standard ISO 3308:2000. Routine Analytical Cigarette-Smoking Machine – Definition and Standard Conditions; 4th Edition, ISO, Geneva, Switzerland, 2000.

31. Colard, S. and R. Julien: Characterisation of the Draw Resistance Across a Lit Cigarette; Beitr. Tabakforsch. Int. 25 (2013) 586–594. DOI: 10.2478/cttr-2013-0935

32. Gaisser, H.: Fluiddynamik in der Cigarette und deren Einfluß auf den Zugwiderstand; Beitr. Tabakforsch. Int. 16 (1994) 11–46. DOI: 10.2478/cttr-2013-0630

33. University of Kentucky, College of Agriculture, Reference Cigarette Program: The Reference Cigarette; Available at: https://ctrp.uky.edu/resources/pdf/webdocs/3R4F%20Preliminary%20Analysis.pdf (accessed April 2017)

34. Baker, R.R.: Contributions to the Draw Resistance of a Burning Cigarette; Beitr. Tabakforsch. 8 (1975) 124–131. DOI: 10.2478/cttr-2013-0367

35. Watson, C.H., G.M. Polzin, A.M. Calafat, and D.L. Ashley: Determination of Tar, Nicotine, and Carbon Monoxide Yields in the Smoke of Bidi Cigarettes; Nicotine Tob. Res. 5 (2003) 747–753. DOI: 10.1080/1462220031000158591

Journal Information


CiteScore 2017: 0.63

SCImago Journal Rank (SJR) 2017: 0.309
Source Normalized Impact per Paper (SNIP) 2017: 0.403

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 283 272 11
PDF Downloads 125 123 5