The first polish tektites: preliminary sem investigation

Open access


In Lower Silesia, the first Polish moldavites were discovered. To recognize the primary chemical composition and check the morphology of investigated material SE and BSE images were used. The samples show presence of vesicles, which are one of the most typical features of tektite glass. Referring to the preliminary EDS results and comparing them with literature data, it can be assumed that in all cases the base material for all known moldavites was the same.

Artemieva, N.A. (2002) Tektite origin in oblique impact: Numerical modeling, In: Y.Plado and L.Pesonen (eds.) Meteorite Impacts in Precambrian Shields, Springer Verlag, Berlin, 257-276.

Baker, G. (1963) Form and sculpture of tektites, In: J.A.O’Keefe (ed.) Tektites, University Press, 1-24.

Barnes, V.E. (1969) Petrology of moldavites, Geochim. Cosmochim. Acta, 33, 1121-1134.

Chao, E.C.T. (1963) The petrographic and chemical characteristics of tektites, In: J.A.O’Keefe (ed.) Tektites, University Press, 51-94.

Dence, M.R. (1971) Impact melts, Journal of Geophysical Research, 76, 5552-5565.

Engelhardt, W.v. (1967) Chemical composition of Ries glass bombs, Geochimica et Cosmochimica Acta, 31, 1677-1689.

Engelhardt, W.v. (1972) Shock produced rock glasses from the Ries crater, Contributions to Mineralogy and Petrology, 36, 265-292.

Engelhardt, W.v., Arndt, J., Fecker, B., Pankau, H.G. (1995) Suevite breccia from the Ries crater, Germany: Origin, cooling history, and devitrification of impact glasses, Meteoritics, 30, 279-293.

Engelhardt, W.v., Berthold, C., Wenzel, T., Dehner, T. (2005) Chemistry, small-scale inhomogeneity, and formation of moldavites as condensates from sands vaporized by the Ries impact, Geochimica et Cosmochimica Acta, 69, 5611-5626.

Grieve, R.A.F. (1975) Petrology and chemistry of impact melt at Mistastin Lake crater, Labrador, Geological Society of America Bulletin, 86, 1617-1629.

Grieve, R.A.F., Cintala, M. J. (1992) An analysis of differential impact crater scaling and implications for the terrestrial record, Meteoritics & Planetary Science, 27, 526-538.

Grieve, R.A.F., Dence, M.R., Robertson, P.B. (1977) Cratering processes: As interpreted from the occurrence of impact melts, In: D.J. Roddy, R.O.Pepin and R.B.Merrill (eds.) Impact and explosion cratering, Pergamon Press, 791-814.

Jessberger, E., Gentner, W. (1972) Mass spectrometric analysis of gas inclusions in Muong Nong glass and Libyan Desert Glass, Earth and Planetary Science Letters, 14, 221-225.

Knobloch V. (1997) Nektere problemy vzniku vltavinu III. - Tvary inkluzi a textura ve svetle impaktoveho procesu, Prirodoved. Sbor. Zapadomorav. Muz. v Trebici, 31, 54-60.

Koeberl, C. (2007) The geochemistry and cosmochemistry of impacts, In: H.D.Holland and K.K.Turekian (eds.) Meteorites, comets, and planets, Elsevier, 1-52.

Koeberl, C., Brandstatter, F., Niedemmazr, G., Kurat, G. (1988) Moldavites from Austria, Meteoritics, 23, 325-332.

Konta, J. (1971a) Shape analysis of moldavites and their impact origin, Mineral. Mag., 38, 408-417.

Lange J.M. (1995) Lausitzer Moldavite und ihre Fundschichten. Schrift, Geowissenschaften, 3, Berlin.

Magna, T., Deutsch, A., Mezger, K., Skala, R., Seitz, H.M., Mizera, J., Randa, Z., Adolph, L. (2011) Lithium in tektites and impact glasses: Implications for sources, histories and large impacts, Geochimica et Cosmochimica Acta, 75, 2137-2158.

Osinski, G.R. (2003) Impact glasses in fallout suevites from the Ries impact structure, Germany: An analytical SEM study, Meteoritics & Planetary Science, 38, 1641-1667.

Randa, Z., Mizera, J., Frana, J., Kucera, J. (2008) Geochemical characterization of moldavites from a New locality, the Cheb Basin, Czech Republic, Meteoritics & Planetary Science, 43, 461-477.

See, T.H., Wagstaff, J., Yang, V., Hörz, F., McKay G.A. (1998) Compositional variation and mixing of impact melts on microscopic scales, Meteoritics & Planetary Science, 33, 937-948.

Stöffler, D. (1984) Glasses formed by hypervelocity impact, Journal of Non-Crystalline Solids, 67, 465-502.

Stöffler, D., Artemieva, N.A., Pierazzo, E. (2002) Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field, Meteoritics & Planetary Science, 37, 1893-1907.

Suess, H.E. (1951) Gas content and age of tektites, Geochimica et Cosmochimica Acta, 2, 76-79.

Trnka, M., Houzar, S. (2002) Moldavites: a review, Bulletin of the Czech Geological Survey, 77, 283-302.

Vennemann, T.W., Morlok, A., Engelhardt, W.v., Kyser, K. (2001) Stable isotope composition of impact glasses from the Nördlinger Ries impact crater, Germany, Geochimica et Cosmochimica Acta, 65, 1325-1336.

Zak, K. (2009) A study of gravel transport paths in a stream using metallurgical slag as a tracer: A contribution to the understanding of fluvial moldavite redistribution, Bulletin Mineralogicko-Petrologickeho Oddeleni Narodniho Muzea v Praze, 17, 79-90.

Zak, K., Skala, R., Randa, Z., Mizera, J. (2012) A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass, Meteoritics & Planetary Science, 47, 1010-1028.

Contemporary Trends in Geoscience

The Journal of Uniwersytet Slaski

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 120 4
PDF Downloads 50 48 1