Comparison of the Overall Motion Correlation Times of Several Mammalian Serum Albumins in Dilute Solutions Determined on the Basis of Maxwell Effect and the Debye-Stokes-Einstein Equation.

Open access


One of the rarely used ways of determining the overall motion correlation time of proteins is method based on the Maxwell effect. This effect consists in the appearance of a stimulated birefringence in liquids or solutions and induced by the mechanical force like shear stress in a streamline flow. To determine the overall motion correlation time for protein in dilute solution is sufficient to know the molecular mass and the ratio of the principal axes of protein, and an intrinsic viscosity. The intrinsic viscosity has been measured using an Ubbelohde-type capillary microviscometer immersed in a water-bath controlled thermostatically in the range from 5°C to 45°C for six mammalian albumins. To check the influence of solution pH on the overall motion correlation time the intrinsic viscosity value of the human serum albumin in solutions at the isoelectric point and beyond of it was measured. The thus obtained correlation times were compared with the times determined on the basis of the Debye-Stokes-Einstein equation.

Acuña A.U., González-Rodriguez J., Lillo M.P., Naqvi K. R. (1987). Protein structure probed by polarization spectroscopy. II. A time-resolved fluorescence study of human fibrinogen. Biophys. Chem. 26, 63-70.

Baranowska H.M., Olszewski K.J. (1996). The hydration of proteins in solutions by self-diffusion coefficients NMR study. Biochim. Biophys. Acta 1289, 312-314.

Bialik C.N., Wolf B., Rachofsky E.L., Ross J.B.A., Laws W.R. (1998). Dynamics of biomolecules: assignment of local motions by fluorescence anisotropy decay. Biophys. J. 75, 2564-2573.

Bucci E., Steiner R. F. (1988). Anisotropy decay of fluorescence as an experimental approach to protein dynamics. Biophys. Chem. 30, 199-224.

Budak H., Köylü M.Z., Yilmaz U.N. (2006). The effective correlation time τ in jaw cysts determined from 400 MHz T1 and T2 measurements. Spectroscopy, 20, 177-183.

Carter D.C., Ho J.X. (1994). Advances in protein chemistry. Vol. 45, Academic Press, NY, pp. 153-203.

Cavalu S., Damian G., Dânşoreanu M. (2002). EPR study of non-covalent spin labeled serum albumin and hemoglobin. Biophys. Chem. 99, 181-188.

Cwietkow W. N., Eskin W. Je. & Frenkel S. Ja. (1968). Structure of macromolecules in solutions. WNT: Warsaw.

Dais P., Vlachou S. (2001). 13C nuclear magnetic relaxation study of segmental dynamics of the heteropolysaccharide pullulan in dilute solutions. Biomacromolecules, 2, 1137-1147.

Danielsen E., Bauer R., Schneider D. (1991). Rotational correlation times of peptides determined by perturbed angular correlations of γ-rays. Eur. Biophys. J. 20, 193-201.

Denisov V.P., Schlessman J.L., Garcia-Moreno E.B., Halle B. (2004). Stabilization of internal charges in a protein: Water penetration or conformational change? Biophys. J. 87, 3982-3994.

Denisov V.P., Halle B. (1995a). Protein hydration dynamics in aqueous solution: A comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen - 17 spin relaxation dispersion. J. Mol. Biol. 245, 682-697.

Denisov V. P., Halle B. (1995b). Hydrogen exchange and protein hydration: The deuteron spin relaxation dispersions of bovine pancreatic trypsin inhibitor and ubiquitin. J. Mol. Biol. 245, 698-709.

Dockal M., Carter D. C., Rüker F. (1999). The three recombinant domains of human serum albumin. J. Biol. Chem. 274, 29303-29310.

Ebert B., Schwarz D., Lassmann G. (1981). Study of Brownian rotational motion in dense solutions of hemoglobin. Studia biophysica, 82, 105-112.

Einstein A. (1956). Investigations on the theory of the Brownian movement. Dover Publications, NY, pp.122.

Feinstein E., Deikus G., Rusinova E., Rachofsky E.L., Ross J.B.A. (2003). Constrained analysis of fluorescence anisotropy decay: application to experimental protein dynamics. Biophys. J. 84, 599-611.

Ferrer M.L., Duchowicz R., Carrasco B., Garcia de la Torre J., Acuña A.U. (2001). The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study. Biophys. J. 80, 2422-2430.

Grant E.H., South G.P., Takashima S., Ichimura H. (1971). Dielectric dispersion in aqueous solutions of oxyhaemoglobin and carboxyhaemoglobin. Biochem. J. 122, 691-699.

Gryczynski I., Cherek H., Lakowicz J.R. (1998). Detection of three rotational correlation times for a rigid asymmetric molecule using frequency-domain fluorometry. Biophys. Chem. 30, 271-277.

Harding S.E. (1997). The intrinsic viscosity of biological macromolecules. Progress in measurements, interpretation and application to structure in dilute solution. Prog. Biophys. Mol. Biol. 68, 207-262.

He X.M., Carter D.C. (1992). Atomic structure and chemistry of human serum albumin. Nature 358, 209-215.

Ho J.X., Holowachuk E.W., Norton E.J., Twigg P.D., Carter D.C. (1993). X-ray and primary structure of horse serum albumin (Equus caballus) at 0.27-nm resolution. Eur. J. Biochem. 215, 205-212.

Hustedt E.J., Cobb C.E., Beth A.H., Beechem J.M. (1993). Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data. Biophys. J. 64, 614-621.

Isihara A. (1968). Irreversible processes in solutions of chain polymers. Adv. Polym. Sci. 5, 531-567.

Jachimska B., Wasilewska M, Adamczyk Z. (2008). Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir, 24, 6866-6872.

Jeffery G.B. (1923). The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A102, 161-179.

Kabir S.R., Yokoyama K., Mihashi K., Kodama T., Suzuki M. (2003). Hyper - mobile water is induced around actin filaments. Biophys. J. 85, 3154-3161.

Kakalis L.T., Kumosinski T.F. (1992). The dynamics of water in protein solutions: The field dispersion of deuterium NMR longitudinal relaxation. Biophys. Chem. 43, 39-49.

Kamal J.K.A., Behere D.V. (2002). Spectroscopic studies on human serum albumin and mthemalbumin: optical, steady-state, and picoseconds time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. J. Biol. Inorg. Chem. 7, 273-283.

Korchuganov D.S., Gagnidze I.E., Tkach E.N., Schulga A.A., Kirpichnikov M.P., Arseniev A.S. (2004). Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities. J. Biomol. NMR 30, 431-442.

Kuttner Y.Y., Kozer N., Segal E., Schreiber G., Haran G. (2005). Separating the contribution of translational and rotational diffusion to protein association. J. Am. Chem. Soc. 127, 15138-15144.

Landau L. D., Lifshitz E. M. (1959). Fluid Mechanics. Pergamon, Oxford.

Lavalette D., Tétreau C., Toubez M., Blouquit Y. (1999). Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys. J. 76, 2744-2751.

Lee D., Hilty C., Wider G., Wüthrich K. (2006). Effective rotational correlation times of proteins from NMR relaxation interference. J. Magn. Reson. 178, 72-76.

Luchinat C., Parigi G. (2007). Collective relaxation of protein protons at very low magnetic field: a new window on protein dynamics and aggregation. J. Am. Chem. Soc. 129, 1055-1064.

Miller I., Gemeiner M. (1998). An electrophoretic study on interactions of albumins of different species with immobilized Cibacron Blue F3G A. Electrophoresis 19, 2506-2514.

Miura M., Asaka N., Shinyashiki N., Mashimi S. (1994). Microwave dielectric study on bound water of globule proteins in aqueous solution. Biopolymers 34, 357-364.

Monkos K. (1996). Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int. J. Biol. Macromol. 18, 61-68.

Monkos K. (2004). On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim. Biophys. Acta 1700, 27-34.

Monkos K. (2005a). A comparison of solution conformation and hydrodynamic properties of equine, porcine and rabbit serum albumin using viscometric measurements. Biochim. Biophys. Acta 1748, 100-109.

Monkos K. (2005b). Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J. Biol. Phys. 31, 219-232.

Monkos K. (2007a). Determination of the overall motion correlation time for some globular proteins in dilute solutions on the basis of Maxwell effect. Curr. Top. Biophys. 30, 7-14.

Monkos K. (2007b). Studies of protein solution conformations using viscometric measurements. [In:] Uversky V. & Permyakov E. (eds.), Methods in protein structure and stability analysis. Part C. Conformational stability, size, shape and surface of protein molecules, Nova Science Publishers, New York, pp. 355-387.

Monkos K. (2013). A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form. Gen. Physiol. Biophys. 32, 67-78.

Moser P., Squire P. G., O’Konski C. T. (1966). Electric polarization in proteins – dielectric dispersion and Kerr effect studies of isoionic bovine serum albumin. J. Phys. Chem. 70, 744-756.

Nesmelova I. V., Skirda V. D., Fedotov V. D. (2002). Generalized concentration dependence of globular protein self-diffusion coefficients in aqueous solutions. Biopolymers, 63, 132-140.

Perrin F. (1934). Mouvement brownien d’un ellipsoide: Dispersion dielectrique pour des molecules ellipsoidales. J. Phys. Radium Ser. VII. 5, 303-304.

Perrin F. (1936). Mouvement Brownien d’un ellipsoide. II Rotation libre de depolarization des fluorescence: Translation et diffusion de molecules ellipsoidales. J. Physique Radium 7, 1-11.

Raman C.V., Krishnan K.S. (1927). The Maxwell effect in liquids. Nature 120, 726-727.

Rezaei - Ghaleh N., Klama F., Munari F., Zweckstetter M. (2015). HYCUD: a computational tool for prediction of effective rotational correlation time in flexible proteins. Bioinformatics 31, 1319-1321.

Simha R. (1940). The influence of Brownian movement on the viscosity of solutions. J. Phys. Chem., 44, 25-34.

Squire P.G., Himmel M.E. (1979). Hydrodynamics and protein hydration. Arch. Biochem. Biophys. 196, 165-177.

Steinhoff H.J. (1988). A simple method for determination of rotational correlation times and separation of rotational and polarity effects from EPR spectra of spin - labeled biomolecules in a wide correlation time range. J. Biochem. Biophys. Methods 17, 237-248.

Steinhoff H.J., Lieutenant K., Schlitter J. (1989). Residual motion of hemoglobin - bound spin labels as a probe for protein dynamics. Z. Naturforsch. 44c, 280-288,

Steinhoff H.J. (1990). Residual motion of hemoglobin-bound spin labels and protein dynamics: viscosity dependence of the rotational correlation times. Eur. Biophys. J. 18, 57-62.

Takeda K., Yamamoto K. (1990). Fluorescence lifetime and rotational correlation time of bovine serum albumin-sodium dodecyl sulfate complex labeled with 1-dimethylaminonaphthalene-5-sulfonyl chloride: Effect of disulfide bridges in the protein on these fluorescence parameters. J. Protein Chem. 9, 17-22.

Takeda K., Yoshida I., Yamamoto K. (1991). Changes of fluorescence lifetime and rotational correlation time of bovine serum albumin labeled with 1 - dimethylaminonaphthalene-5-sulfonyl chloride in guanidine and thermal denaturations. J. Protein Chem. 10, 17-23.

Van-Quynh A., Willson S., Bryant R. G. (2003). Protein reorientation and bound water molecules measured by 1H magnetic spin-lattice relaxation. Biophys. J. 84, 558-563.

Vlachou S., Politou A., Dais P., Mazeau K., Taravel F.R. (2001). Structure and dynamics of the branched polysaccharide scleroglucan in dilute solutions studied by 1D and 2D NMR spectroscopy. Carbohydr. Polym. 46, 349-363.

Wüthrich K. (2003). NMR studies of structure and function of biological macromolecules (Nobel Lecture). J. Biomol. NMR 27, 13-39.

Yao S., Babon J.J., Norton R.S. (2008). Protein effective rotational correlation times from translational self-diffusion coefficients measured by PFG-NMR. Biophys. Chem. 136, 145-151.

Yilmaz A., Budak H., Ulak F.S. (2008). Determination of the effective correlation time modulating 1H NMR relaxation processes of bound water in protein solutions. Magn. Reson. Imaging, 26, 254-260.

Yilmaz A., Zengin B., Ulak F.S. (2014). NMR proton spin-latice relaxation mechanism in D2O solutions of albumin determined at 400 MHz. J. Appl. Spectrosc. 81, 365-370.

Zeeb M., Jacob M.H., Schindler T., Balbach J. (2003). 15N relaxation study of the cold shock protein CspB at various solvent viscosities. J. Biomol. NMR 27, 221-234.

Zorrilla S., Rivas G., Acuña A.U., Lillo M.P. (2004). Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study. Protein Sci. 13, 2960-2969.

Zorrilla S., Hink M.A., Visser A.J.W.G., Lillo M.P. (2007). Translational and rotational motions of proteins in a protein crowded environment. Biophys. Chem. 125, 298-305.