Ultraweak luminescence of the Characeae plants under the circumstances of cyclical changes in temperature

Open access

Ultraweak luminescence of the Characeae plants under the circumstances of cyclical changes in temperature

The study sought to measure ultraweak chemiluminescence (UWL) of Nitellopsis Obtusa plants with regards to temperature changes within the range from 4°C to 38°C. The temperature changes were being executed in reversible cycles. The variations of UWL intensity with temperature had an exponential character. In case when temperature was changed rapidly by 5°C every 20 min or fluently with rate of 0.17 °C/min we observed a temperature hysteresis loop in the first cycles and the loop character disappeared in the second cycles. When the temperature was being changed fluently but faster (1.3 °C/min) after 3 cycles (about 2 hours) the curves no longer manifested the loop character. This phenomenon can point that the plants adapted themselves to the temperature changes. We also observed a stimulation of UWL made in successful cycles. Our spectral experiments showed that the UWL may consist mainly of emission of the singlet oxygen sigma (762 nm) and induced emission of chlorophyll.

Aid F., Kesri-Benhassaine G., Demandre C. & Mazliak P. (1998). Modification of the biosynthesis of rape lipid molecular species by heat shock. Phytochemistry, 47, 1195-1200.

Ali M. B., Hahn E. J. & Paek K. Y. (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Biochem., 43, 213-223.

Almeselmani M., Deshmukh P. S., Sairam R. K., Kushwaha S. R. & Singh T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171, 382-388.

Beljanski M. V., Andjus P. R., Hadzi-Pavlović A., Srejic R. A. & Vucelić V. (1997). Differential scanning calorimetry of the plasma membrane-enriched fraction in Chara. Plant Sci., 125, 171-176.

Blatt F. J. (1974). Temperature dependence of the action potential in Nitella flexilis. Biochim. Biophys. Acta, 329, 382-389.

Boveris A., Varsavsky A. I., Da Silva S. G. & Sanchez R. A. (1983). Chemiluminescence of soybean seeds: Spectral analysis, temperature dependence and effect of inhibitors. Photochem. Photobiol., 38, 99-104.

Cadenas E. & Sies H. (1984). Low-level chemiluminescence as an indicator of singlet molecular oxygen in biological systems. Methods Enzymol., 105, 221-231.

Carvalho M., Carvalho F. & Bastos M. L. (2001). Is hyperthermia the triggering factor for hepatotoxicity induced by 3,4-methylenedioxymethamphetamine (ecstasy)? An in vitro study using freshly isolated mouse hepatocytes. Arch. Toxicol., 74, 789-793.

Chen W. L., Zhou Q., Li L., Xing D., Van Wijk R. & Tang Y. H. (2006). Comparing ultraweak bio-chemiluminescence emission in wounded green and etiolated soybean cotyledons. Proc. SPIE, 6088, 60881G1-60881G10.

Chien L. T. & Hwang D. F. (2001). Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comp. Biochem. Phys. B, 128, 91-97.

Demidchik V. V., Naidun S. N., Yablontskaya L. I., Sokolik A. I. & Yurin V. M. (2001). Alteration of ion channels in the plasmalemma of Nitella flexilis cells during long-term hyperthermia. Russ. J. Plant Physiol., 48, 294-299.

Devaraj B., Usa M. & Inaba H. (1997). Biophotons: ultraweak light emission from living systems. Curr. Opin. Solid State Mat. Sci., 2, 188-193.

Djurisić M. R. & Andjus P. R. (2000). Temperature sensitivity of the tonoplast Ca(2+)-activated K+ channel in Chara: the influence of reversing the sign of membrane potential. J. Membr. Biol., 178, 215-224.

Gabryś, H. (1979). The types of cytoplasmic motion in plant cells and mechanisms of its creating. Mater. Mol. Biol., 6, 99-109 (in polish).

Havaux M., Triantaphylides C. & Genty B. (2006). Autoluminescence imaging: a non-invasive tool for mapping oxidative stress. TRENDS Plant Sci., 11, 480-484.

Hertel A. & Steudle E. (1997). The function of water channels in Chara: The temperature dependence of water and solute flows provides evidence for composite membrane transport and for a slippage of small organic solutes across water channels. Planta, 202, 324-335.

Hideg E, Kobayashi M. & Inaba H. (1991). Spontaneous ultraweak light emission from respiring spinach leaf mitochondria. Biochim. Biophys. Acta - Bioenergetics, 1098 27-31.

Hideg E, Kobayashi M. & Inaba H. (1992). Delayed fluorescence and ultraweak light emission from isolated chloroplasts (comparison of emission spectra and concentration dependence). Plant Cell Physiol. 33, 689-693.

Inaba H. (1988). Super-high sensitivity systems for detection and analysis of ultraweak photon emission from biological cells and tissues. Experientia, 44, 550-559.

Jaśkowska A., Borc R., Dudziak A., Milczarek I. & Śpiewla, E. (2001). Ultraweak biochemiluminescence of dark-adapted Characeae cells. Curr. Top. Biophys., 25, 95-101.

Jaśkowska A., Borc R., Milczarek I., Dudziak A. & Śpiewla E. (2001). Kinetics studies of ultraweak luminescence induced by ascorbic acid in Characeae cells and their structures. Luminescence, 16, 51-56.

Jaśkowska A., Górski Z., Dudziak A. (2003). Light emission from algae as a signaling of metabolic changes. Proc. SPIE, 5566, 15-22.

Khan A. U. (1989). Near infrared emission of singlet oxygen generated in the dark. J. Biol. Chem., 4, 200-207.

Kobayashi M., Kibuchi D. & Okamura H. (2009). Imaging of Ultraweak spontaneous proton emission from human body displaying diurnal rhythm. PLoS ONE, 4(7), e6256.

Korthout H., Berecki G., Bryin W., van Duijn B. & Wang M. (2000). The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett., 475, 139-144.

Krauss W. Physiology and biochemistry of algae. (1962). Academic Press, New York.

Krasnovsky Jr. A. A. (2008) Luminescence and photochemical studies of singlet oxygen photonics. (2008). J. Photochem. Photobiol., 196, 210-218.

Liu P., Guo W. S., Pu H. C., Feng C. N. Zhu X. K. & Peng Y. X. (2006). Effects of high temperature on antioxidant enzymes and lipid peroxidation in flag leaves of wheat during grain filling period. Agric. Sci. China, 5, 425-430.

Makino T., Kato K., Iyozumi H. & Aoshima Y. (2005). Biophoton emission and defense systems in plants. [In:] Shen X., Van Wijk R. (eds.) Biophotonics: Optical Science and Engineering for the 21st Century. New York, Verlag Springer Science, pp. 205-218.

Nakamura K. & Hiramatsu M. (2005). Ultra-weak photon emission from human hand: Influence of temperature and oxygen concentration on emission. J. Photochem. Photobiol. B: Biology, 80, 156-160.

Necchi O. Jr. (2004). Photosynthetic responses to temperature in tropical lotic macroalgae. Phycol. Res., 52, 140-148.

Ogata K. (2000). The double-water-film electrode: A device for measuring the resistance and the capacitance of the internode/node interface of Chara as functions of time and temperature. J. Plant Growth Regul., 19, 98-105.

Parihar M. S., Dubey A. K., Javeri T. & Prakash P. (1996). Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish heteropneustes fossilis exposed to elevated temperature. J. Therm. Biol., 21, 323-330.

Paszewski A. & Śpiewla E. (1986). Temperature dependence of the membrane resistance in Characeae cells. Physiol. Plant., 66, 134-138.

Proseus T. E, Zhu G. L. & Boyer J. S. (2000). Turgor, temperature and the growth of plant cells: using Chara corallina as a model system. J. Exp. Bot., 51, 1481-1494.

Radenovic C. N., Maksimov G. V., Jeremic M. G. & Vuchinich Z. B. (2000). The study of microviscosity of plasma membranes of Nitella cells during rest and excitation. Biofizika, 45, 502-508.

Rao K. V. M., Sriedevi V. & Satyanarayana N. V. (2002). Heat shock induced lipid changes and solute leakage in germinating seeds of pigeonpea. Biol. Plantarum, 45, 71-76.

Rice-Evans C. A., Diplock A. T. & Symons M. R. C. (1991). Techniques in free radical research. [In:] Burdon R. H., van Knippenberg P. H. (eds.) Techniques in Biochemistry and Molecular Biology. Amsterdam, Elsevier, pp. 185-194.

Roschger P., Scott R. Q., Devaraj B. & Inaba H. (1993). Observation of phase transitions in intact leaves by intrinsic low-level chemiluminescence. Photochem. Photobiol., 57, 580-283.

Sławinska D. (1990). Spectral analysis of ultraweak photon emission from plants. [In:] Jeżowska-Trzebiatowska B., Kochel B., Sławinski J., Strąk, W. (eds.) Biological luminescence., Singapore, World Scientific Publishing., pp. 197-213.

Slawinski J. & Popp F. A. (1987). Temperature hysteresis of low-level luminescence from plants and its thermodynamical analysis. J. Plant Physiol., 130, 111-123.

Triglia A., Grasso F., Musumeci F., Scordino A., Luciani F., Battiato A., Allegra A. & Rajfur Z. (1993). Temperature dependence of the ultraweak spontaneous photon emission from soya seeds. Nuovo Cimento D, 15, 1361-1370.

Tryka S. (1998). Cut-off filter method for light-induced photon emission spectra estimation. Comput. Chem., 22, 113-118.

Uchida G., Nemoto T. & Tsuchiya Y. (1995). Characteristics in sliding motion of small organelles in a Nitella internodal cell. J. Phys. Soc. Jpn., 64, 4959-4963.

Vieira J. Jr. & Necchi O. Jr. (2006). Photosynthetic characteristics of a tropical population of Nitella cernua (Characeae, Chlorophyta). Braz. J. Plant Physiol., 18, 379-388.

Wayne R., Staves M. P. & Leopold A. C. (1990). Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis. Protoplasma, 155, 43-57.

Yan Y., Popp F. A., Sigrist S., Schlesinger D., Dolf A., Yan Z., Cohen S. & Chotia A. (2005). Further analysis of delayed luminescence of plants. J. Photochem. Photobiol. B, 78, 235-244.