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Abstract 
If there are no heavy sanctions in place to prevent it, the problem of the 

cancellation of appointments can lead to huge economic losses and can have a 

significant impact on underutilized resources of healthcare facilities. A good model 

to predict the appointment cancellations could be an effective solution to this 

problem. Therefore, a new Bayesian method is proposed to estimate accurately the 

probability of the cancellation of visits to healthcare institutions based on specific 

factors such as age. This model uses the regression for binary variables, linking the 

explanatory variables to the probability of appearance at a previously made 

appointment with a new weighted function and estimating the parameters with the 

Bayesian method. The goodness of the new method is demonstrated by applying it 

to a real case and by comparing it to other methodologies. Therefore, the 

advantages of the proposed method are exposed and possible real-world 

applications are described. 
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Introduction 
A problem in the health sector is represented by too many cancellations and by the 

absence of the patient to the medical visits, which cause huge economic losses to 

the organization and the underutilization of the structure. Often, indeed, the 

cancellation is too close to the date of the appointment, which enables clinics to 

replace the patient (Alaeddini et al., 2015). One possibility to solve this problem is 

open access, which schedules the appointment on the same day of the call 

regardless of the reason for the visit (O’Hare, Corlett, 2004). Another possibility is 

overbooking, which establishes an additional number of patients every day based 

on the rate of cancellations or absences recorded in the organization (Daggy et al., 

2010, LaGanga, Lawrence, 2007). According to Lee et al. (2013), overbooking 

performs better than open access in general. However, overbooking leads to 

patient dissatisfaction, caused by the increase in the waiting time, and to the 

increment of the costs for clinic overtime. The choice of the number of appointments 
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to be added in excess and their most profitable temporal collocation are essential to 

optimize the trade-off between the number of additional patients and the 

consequent increase in the waiting times and in the costs. LaGanga and Lawrence 

(2007), starting from the rate of presence of patients, analyse various overbooking 

policies so as to decide how many appointments have to be inserted and how they 

have to be included in the program of visits, considering the waiting time and the 

reduction of the costs. Their analysis points out that the "interappointment times" 

method works just as well as other methods, which are more complex but more 

attractive for the clinics interested in minimizing overtime to the detriment of patient 

waiting times. However, as evidenced by Daggy et al. (2010), although some studies 

have examined the factors, which lead to the cancellation of the visit or to the 

absence of the patient, few introduce the probabilities, so obtained, in the system 

for planning clinical visits so as to improve them further. For example, LaGanga and 

Lawrence’s paper considers the average rate of presence in the organization but 

without considering the peculiarities of the patients. Instead, an example of 

improvement of the system for planning clinical visits linked to the personal 

characteristics of patients is the work proposed by Samorani and LaGanga (2015). 

Indeed, they study the optimal overbooking using the prediction of an absence 

based on the individual characteristics of the patient and on the date of the 

appointment. Therefore, an accurate prediction of no-show and cancellation 

probability becomes fundamental for any scheduling system (Alaeddini et al., 2015) 

and for this reason, this paper proposes a new method to predict the probability of 

presence based on the age of the person, one of the individual factors, which 

mainly influences it. The factors, which influence the no-show rate, vary across clinics 

(Kopach et al. 2006), but if their and other studies are considered, age remains 

always one of the fundamental factors. This new method, improving the estimation 

of the rate of presence, improves the scheduling methods making them more 

accurate.  

 

New link function and parameters estimation 
When a researcher analyses a dichotomous response variable 𝑌, i.e. which can take 

only the values 0 or 1, he assumes that it is distributed as a Bernoulli with probability 𝑝 

of having success, therefore he will have 𝑌 = 1 with probability 𝑝. In general, the best 

way to understand and to estimate 𝑝 is to assume that it is a function, called link, of 

other variables, defined as explanatory. In traditional models the function, which links 

the explanatory variable 𝑋 to the probability 𝑝, is monotone. The logit link function is 

the most used in many fields of applied statistics because the interpretation of its 

parameters is simple and straightforward (Ntzoufras, 2008). When the value 𝑥𝑖 of the 

explanatory variable 𝑋 is observed, the probability of having a success is given by 

the following logit function: 

 
𝑝𝑖 =

𝑒𝛼+𝛽𝑥𝑖

1+𝑒𝛼+𝛽𝑥𝑖
 , 

(1) 

where the subscript 𝑖 defines the 𝑖-th observation and the parameter β determines if 

the probability is increasing or decreasing with respect to the explanatory variable 𝑋. 

If the parameter  is positive, the function is increasing, if it is negative, the function is 

decreasing. In this paper a new function, which links the probability to the variable 

age in a non-monotone way, is proposed because many empirical analyses of data 

find that the trend, based on age, of the probability of being present at the clinical 

appointment is not monotone, but it follows an irregular trend (Davies et al., 2016, 

Gebhart, 2017, Chua, Chow, 2018). This non-monotone function is the following 



  

 

 

69 

Croatian Review of Economic, Business and Social Statistics (CREBSS) 

UDK: 33;519,2; DOI: 10.1515/crebss; ISSN 1849-8531 (Print); ISSN 2459-5616 (Online) 

 

 

Vol. 4, No. 2, 2018, pp. 67-77 

 
𝑝𝑖 = |

𝛾𝑥𝑖

1+𝛾𝑥𝑖
|

⏟  
𝑤𝑖

𝑒−|𝛼+𝛽𝑥𝑖|⏟      
𝑓1

+ |
1

1+𝛾𝑥𝑖
|

⏟  
1−𝑤𝑖

(
2𝑥𝑖+𝜔

𝑥𝑖
2+𝜏+1

)
2

⏟      
𝑓2

, 
(2) 

with the parameters ,  between 0 and 1 and  greater than 0 and with the 

constraint that 𝑝 is between 0 and 1, including the extremes. The weight 𝑊 depends 

on the explanatory variable 𝑋 and therefore 𝑤𝑖 is the weight associated with the 

observed value 𝑥𝑖. The weight determines the importance of the function 1 (𝑓1) and 

of the function 2 (𝑓2) and with the increase in the variable 𝑋 the weight of the first 

function increases ( W/ X>0) and that of the second decreases. For example, if 

𝑥𝑖=0 is observed, the probability 𝑝𝑖 is exactly 𝑓2.  
In the case where the variable 𝑋 is always greater than or equal to 0, the relation 

(2) can be simplified by removing some absolute values:  

 

𝑝𝑖 = (
𝛾𝑥𝑖

1 + 𝛾𝑥𝑖
)

⏟      
𝑤𝑖

𝑒−|𝛼+𝛽𝑥𝑖|⏟      
𝑓1

+ (
1

1 + 𝛾𝑥𝑖
)

⏟      
1−𝑤𝑖

(
2𝑥𝑖 +𝜔

𝑥𝑖
2 + 𝜏 + 1

)
2

⏟        
𝑓2

 .  
(3) 

 

Both functions are not monotone. For example, if the parameter  is greater than 

0 and the parameter  is less than 0, the function 𝑓1 is increasing for the values of the 

regressor 𝑋 between 0 and -/ and decreasing for the values greater than -/. The 

function 𝑓2 is increasing for the values of the regressor 𝑋 between 0 and 𝑔, while it is 

decreasing for the values greater than 𝑔. Therefore, the value 𝑔 results as given in (4):  

 
𝑔 =

−𝜔+√𝜔2+ 4(𝜏+1)

2
. (4) 

 

Estimation method 
The Bayesian method, which considers the parameters as random variables, is 

recommended to estimate the parameters of formula (3). Similarly, to the classic 

Bayesian model, a prior distribution is assigned for the parameters. From the data, 

the researcher obtains a posterior distribution, from which it is possible to calculate 

the average, which represents one of the punctual estimations of the parameter, 

together with the mode and the median. A very simple example is used to 

remember the Bayesian operating method. If the researchers want to estimate the 

probability 𝑝 directly from the observed data of the variable 𝑌, without considering 

any explanatory variable 𝑋, generally they assume that 𝑌 has a Bernoulli distribution 

with parameter 𝑝 and that this latter follows the Beta distribution with parameters 

(𝑎, 𝑏), where 𝑎 and 𝑏 are selected by them on the basis of their knowledge and on 

the basis of readings of previous studies. Then, in Bayesian theory the Beta distribution 

(𝑎, 𝑏) becomes a prior distribution. To find an estimation of the parameter 𝑝, it is 

necessary to calculate the posterior distribution, which is proportional to the product 

of the likelihood function and the prior distribution. Under the assumption of having 𝐼𝑠 
observations 𝑦𝑖 of the dichotomous variable 𝑌, the posterior distribution of 𝑝 is 

proportional to: 

 
∏ 𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖
𝐼𝑠
𝑖=1⏟            
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑝𝑎−1(1−𝑝)𝑏−1

𝐵(𝑎,𝑏)⏟      
𝑝𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

, 
(5) 

 

and then it is equal to: 



  

 

 

70 

Croatian Review of Economic, Business and Social Statistics (CREBSS) 

UDK: 33;519,2; DOI: 10.1515/crebss; ISSN 1849-8531 (Print); ISSN 2459-5616 (Online) 

 

 

Vol. 4, No. 2, 2018, pp. 67-77 

 
𝑝
∑ 𝑦𝑖+
𝐼𝑠
𝑖=1

𝑎−1
(1−𝑝)

𝐼𝑠−∑ 𝑦𝑖+
𝐼𝑠
𝑖=1

𝑏−1

𝐵(∑ 𝑦𝑖+
𝐼𝑠
𝑖=1 𝑎,𝐼𝑠−∑ 𝑦𝑖+

𝐼𝑠
𝑖=1 𝑏)

=

 𝐵𝑒𝑡𝑎(∑ 𝑦𝑖 +
𝐼𝑠
𝑖=1 𝑎⏟      

𝑎1

, 𝐼𝑠 − ∑ 𝑦𝑖 +
𝐼𝑠
𝑖=1 𝑏⏟          
𝑏1

). 
(6) 

In general, the punctual estimation of the parameter is set equal to average, to 

median or to mode. The prior distribution and the likelihood are conjugated if the 

posterior distribution has the same form as the prior distribution (Gill, 2002). In general, 

the researchers can find exactly the posterior distribution analytically only if the 

conjugacy subsists. When the posterior distribution is difficult or impossible to handle 

analytically, the Monte Carlo method is among those advisable, in particular in its 

form called Markov Chain Monte Carlo (MCMC), also implemented by Winbugs 

software (Gill, 2002, Carlin, Louis, 2008, Kéry, 2010). This methodology creates a chain, 

sequentially sampling the parameter values from a stationary distribution, which 

corresponds to the posterior joint distribution of interest (Carlin, Louis, 2008). The state 

of the chain after a large number of iterations (2𝑛 = number of iterations) is used as a 

sample of the searched distribution.  

A problem of MCMC is the number of iterations necessary to achieve the 

convergence to the stationary distribution. Therefore, one of the essential analyses is 

to test that the values come from a stationary distribution, i.e. that the Markov chain 

is convergent (Kéry, 2010). In the empirical analyses, one of the most frequently 

applied controls is the test proposed by Brooks, Gelman and Rubin (Brooks, Gelman, 

1998, Gelman et al., 2004), which can be used only if two or more chains are 

available (𝑚 = number of chains 2). The statistic of this test, called corrected scale 

reduction factor, is based on “between chain variance” (𝐵/𝑛) and “within chain 

variance” (𝑊) and is equal to: 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑆𝑅𝐹 =
𝑑𝑓+3

𝑑𝑓+1

𝑛−1

𝑛
𝑊+

𝑚+1

𝑚

𝐵

𝑛

⏞        
𝑉

𝑊
=
𝑑𝑓+3

𝑑𝑓+1
𝑃𝑆𝑅𝐹, 

(7) 

 

where 𝑑𝑓 ≈ 2𝑉/𝑣𝑎𝑟(𝑉). The convergence is demonstrated if the square root of the 

statistic is less than 1.2 or more restrictively less than 1.1. In the multivariate case, i.e. in 

presence of several parameters to be estimated, the test can be performed by 

calculating both the corrected SRF for each factor and the following summary 

statistic: 

 

𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑃𝑆𝑅𝐹 = 𝑚𝑎𝑥𝑒

𝑒′(
𝑛−1

𝑛
𝑊+

𝑚+1

𝑚

𝐵

𝑛

⏞        
𝑉

)𝑒

𝑒′𝑊𝑒
 . 

(8) 

 

To use the Bayesian method, it is necessary to select the prior distributions for the 

parameters of the new link function to calculate the posterior distributions. The 

parameters  and  have a prior distribution, which is not very informative so as not 

to add a priori information, while the parameters  and  have a Beta, since their 

values are between 0 and 1, and the parameter  a Gamma, being always greater 

than 0 
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 α~flat prior 

β~ flat prior

γ~Beta(2,2)

ω~Beta(0.5,0.5)

τ~Gamma(1,0.5) .

 (9) 

 

The prior distributions of the parameters  and  are flat priors, which in Winbugs 

can be approximated by a Normal distribution with mean 0 and variance 1,000,000. 

Very often, the Bayesian logistic regression requires a flat prior, used to provide as 

little information as possible on the parameters (Gill, 2002). In my model, as in the 

traditional Bayesian logistic regression, the calculation of the posterior distribution is 

not simple and it requires the use of the Markov Chain Monte Carlo method. 

 

Empirical analysis 
The new method is demonstrated using 691 appointments observed in a hospital 

clinic in the second quarter of 2016. The distance to clinic does not affect the 

probability of being present at the visit because all of the patients, analyzed in this 

paper, belong to the same neighbourhood. Figure 1 describes the non-monotone 

trend of the probability of being present based on age groups. 
 

 
Figure 1 Empirical probability of presence 

 

This paper analyses how age affects the probability of being present at the 

medical examination. Therefore, the variable of interest 𝑌 is dichotomous and it 

assumes value 1 if the patient is present and value 0 otherwise. The explanatory 

variable 𝑋, which may influence the probability of being present, is represented by 

the factor age. The probability 𝑝 is linked to the explanatory variable age by function 

(3), being 𝑋, by its very nature, greater than or equal to 0. The zero represents the 

children until 12 months. The parameters , , ,  and  are estimated using Winbugs 

software. The Markov Chain Monte Carlo method is used to obtain the posterior 

distributions from the prior distributions and the likelihood function. Two Markov chain 

are calculated such that Brooks-Gelman-Rubin test can be applied. For any chain, it 

is necessary to select the initial values of the parameters, which are respectively (0, -
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0.1, 0.5, 0.5, 20) and (0.5, -0.6, 0, 2, 10). They are chosen considering the proprieties of 

the link function and the prior distributions. The number of analysed iterations are 

respectively 10000, 15000, 20000, 40000 and 50000. The average is used as punctual 

estimation of the parameters. The estimations of the parameters for the various 

iterations are shown in Table 1. Before interpreting them, it is necessary to study if the 

Markov Chains have reached a stable distribution, using Brooks-Gelman-Rubin 

diagnostic statistics. For example, the number of iterations necessary for 

convergence depends on the complexity of the model.  

 

Table 1 Estimated parameters 
 iterations 

10000 15000 20000 40000 50000 

 -1.05 -1.033 -1.015 -1.031 -1.038 

 -0.01129 -0.01157 -0.01182 -0.01154 -0.01142 

 0.4853 0.4764 0.4676 0.4739 0.4779 

 0.7134 0.7171 0.7175 0.7185 0.7192 

 3.251 3.273 3.28 3.271 3.271 

 

Table 2 √𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑆𝑅𝐹 
 iterations 

10000 15000 20000 40000 50000 

 1.012582 1.021191 1.03211 1.000087 1.0008 

 1.005074 1.014746 1.015258 0.999997 1.000528 

 1.001081 1.000516 1.000685 1.000026 0.999995 

 1.00017 1.000382 1.000415 1.000141 1.000046 

 0.999975 0.999995 1.000042 1.00002 0.999999 

 

Table 3 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃𝑆𝑅𝐹 
 iterations 

10000 15000 20000 40000 50000 

Multiple PSRF 1.005031 1.005492 1.009169 1.000621 1.000162 

 

The chains reach the stationary already at 10000 iterations, indeed the square 

root of the corrected SRF is less than 1.1 (Table 2) and also the multiple PSRF is less 

than 1.1 (Table 3). 

 

The new methods and others present in literature 
The goodness of the model developed in this paper is verified by its comparison with 

the same models present in the literature. The new method is compared to the 

following methods: the traditional Bayesian logistic regression, in which the 

parameters of the link function (1) have a flat prior distribution; the traditional 

Bayesian probit regression, in which the prior distributions are flat distributions; the 

Frequentist logistic and probit regressions (McCullagh, Nelder, 1989), in which the 

parameters are estimated from the maximum likelihood; and the Bayesian logistic 

and probit regressions proposed by Gelman (Gelman et al., 2008), in which the prior 

distributions are Cauchy distributions. 

The difference between the regression described in this paper and the traditional 

Bayesian logistic one consists exclusively in the function, which links the probability 𝑝𝑖 
to the explanatory variable 𝑥𝑖, which is represented by the patient age in this 

specific case. The link function of the new method is represented by formula (3), 

being 𝑥𝑖 ≥ 0, while the corresponding of the traditional logistic regression from (1). 

Both models use the Bayesian estimation method and they choose a flat prior 
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distribution for the common parameters, i.e. for  and . In the estimation process, 

the same initial values of the parameters  and  are chosen for both of the 

methodologies. 

The difference between the new method and the Frequentist logistic one consists 

both in the chosen link function and in the estimation method. In the Frequentist 

logistic regression, the link between the probability of being present at the visit 𝑝𝑖 is 
linked to the variable age by equation (1). In the Frequentist theory the parameters 

are considered unknown fixed values and therefore in the logistic Frequentist 

regression the parameters  and  of equation (1) are estimated maximizing the 

likelihood function as given in (10): 

 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖𝐼𝑠
𝑖=1 , (10) 

 

where the probability 𝑝𝑖 is given by function (1). The frequentist probit method differs 

from the frequentist logit only for the following link function: 

 𝑝𝑖 =
1

√2𝜋
∫ 𝑒−𝑧

2
𝑑𝑧

𝛼+𝛽𝑥𝑖
−

, 
(11) 

 

while the estimation of the parameters  and  is obtained again by maximizing the 

likelihood function (10) where, however, 𝑝𝑖 is given by equation (11) rather than by 

(1). In both of the frequentist models, the parameter  is significant (its p-value is less 

than 0.05 in both cases) and therefore the variable age affects the presence of the 

patient at the visit.  

As in the Frequentist method, also in the Bayesian one the difference between the 

logit and the probit regressions consists only in the link function, which in the first is 

represented by function (1), while in the second by (11). The prior distributions of the 

probit model remain flat as in that logit and the initial values for the parameters are 

the same chosen for the logistic one. The standardization of the explanatory variable 

is used to avoid overflow in the estimation of the traditional Bayesian probit model. 

The methods proposed by Gelman differ from the new method for the link function 

and for the choice of the prior distributions of the parameters  and , which have 

two Cauchy distributions. In Gelman’s methods, the link function is represented by 

equation (1) in the logit regression and by (11) in the probit one, while in the new 

model by function (3). In the logistic model proposed by Gelman, the intercept  

follows a Cauchy distribution with center 0 and scale 10, while the coefficient of the 

regressor, i.e. , follows a Cauchy distribution with center 0 and scale 2.5. Instead, in 

the probit model proposed by Gelman, the prior distribution of the intercept is a 

Cauchy with center 0 and scale 16, while the parameter  follows a Cauchy 

distribution with center 0 and scale 4. Gelman chooses the distribution of Cauchy, 

because he considers it better than the normal for its characteristic shape. In a 

Normal, the values around zero are more probable and the extreme ones are less 

probable if they are compared to those of a Cauchy (Gelman et al., 2008). 

 

Comparison  
The comparison among the methods is developed using the mean square error of 

the predictor 𝑌̂, given by  

 
𝑀𝑆𝐸 =

∑ (𝑦̂𝑖−𝑦𝑖)
2𝐼𝑠

𝑖=1

𝐼𝑠
, (12) 

 

where 𝑦̂𝑖 is the estimated value and 𝑦𝑖 is the observed value. In the regressions with 

binary 𝑌, 𝑦̂𝑖 is exactly the same as 𝑝̂𝑖 and therefore the MSE is called Brier score 

(Rufibach, 2010). This statistic is chosen to compare the different methodologies 

because it measures the difference between the observed value and the estimated 
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one. The MSE values of the various methods are shown in Table 4, but only for the 

new method and the traditional Bayesian ones (logit and probit) the MSE values are 
calculated using the different numbers of MCMC iterations.  
 

Table 4 𝑀𝑆𝐸 
 iterations 

10000 15000 20000 40000 50000 

New method  0.154564 0.154576 0.154604 0.154585 0.154579 

Bayesian Logistic  0.155365 0.155366 0.155366 0.155367 0.155367 

Bayesian Probit  0.155352 0.155351 0.155351 0.155351 0.155351 

Frequentist Logistic 0.155373      

Frequentist Probit 0.155355      

Gelman’s Logistic 0.155373      

Gelman’s Probit 0.155355      

 

The convergence test proposed by Brooks, Gelman and Rubin (Brooks, Gelman, 

1998) shows that the parameters estimated by the traditional Bayesian models come 

from a stationary distribution already with 10000 iterations, indeed the square root of 

the corrected SRF is less than 1.1 for both parameters and also the multiple PSRF is 

less than 1.1 (Table 5 and Table 6).  
 

Table 5 √CorrectedSRFand MultiplePSRF for traditional Bayesian logistic model 
 iterations 

 10000 15000 20000 40000 50000 

√CorrectedSRF      

 1.000801 1.000051499 1.00008 1.00002 1.000014 

 1.00072 1.000219976 1.000176 1.00006 0.999992 

MultiplePSRF 1.001557 1.000547 1.000295 1.000038 0.9999807 

 

Table 6 √CorrectedSRFand MultiplePSRF for traditional Bayesian probit model 
 iterations 

 10000 15000 20000 40000 50000 

√𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑆𝑅𝐹      

 1.000082 1.000145 1.000235 1.000025 1.00004 

 1.00007 1.000039 1.000135 0.999992 0.999992 
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑃𝑆𝑅𝐹 1.000199 1.000383 1.000529 1.000054 1.000064 

 

 

The Frequentist logit regression and the Gelman’s logit method have the same 

MSE approximated to the sixth digit after the point, the same equivalence is true for 

the Frequentist probit, and the Gelman’s probit. The parameters of the two methods, 

indeed, are very similar as shown in Table 7. The new method has always a lower 

MSE and therefore it estimates better the variable 𝑌, i.e. the presence at a clinic 

appointment.  
 

Table 7 Estimated parameters 
   

Frequentist Logistic -1.020047 -0.009556 

Gelman’s Logistic -1.019845 -0.009555 

Frequentist probit -0.627001 -0.005556 

Gelman’s probit -0.626984 -0.005556 

 

The MSE statistic evaluates the model fit. From a Frequentist perspective, the new 

model has 3 extra parameters and then it is more complex than the others present in 
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literature. However, according Gelman et al. (2014), in a Bayesian analysis the 

number of parameters of a model can be different from the effective one, called 𝑝𝐷, 

which depends on data.  

To explain this concept better, the example made by Gelman et al. (2014), is 

reported below. A model 𝑦1, … 𝑦𝐼𝑠~𝑁(𝜃, 1) with 𝐼𝑠 large and 𝜃~𝑈(0,∞) is analyzed. This 

prior distribution can be considered as a non-informative uniform prior distribution. 

The number of parameters is 1 but the effective one depends on the data. If 𝑦 is 

close to 0, 𝑝𝐷 is approximately 0.5 but if 𝑦 is positive and large, the effective number 

of parameters increases approximately to 1. Then, in Bayesian analysis, to compare 

more models considering also the complexity, it is advised the use of the DIC statistic 

because it considers both the model fit and the complexity measured by the 

effective number of the parameters (Spiegelhalter et al., 2002). The formula of the 

DIC is given in (13):  

 𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷, (13) 

where 𝐷̅ is the posterior mean deviance and 𝑝𝐷 the effective number of parameters 

(Spiegelhalter et al., 2002). The DIC is not a good measure when any parameter has 

a posterior distribution, which is substantially skewed (McElreath, 2016). In the new link 

function only 𝜏 has a skewed distribution while the parameters 𝜔 and 𝛾 have a 

symmetric distribution Beta. In the new method and in the Bayesian models the 

parameters  and  are distributed as a Normal (0, 1,000,000), while in the Gelman’s 

models they are distributed as a Cauchy. These distributions are always symmetric. 

The values of the DIC are showed in Table 8. Here presented new method has the 

smallest DIC, then it perform to be the best in results. 

 

Table 8 Comparison using Deviance information criterion (DIC) 
Method DIC 

New method 683,713 

Bayesian Logistic 685,498 

Bayesian Probit 685,311 

Gelman’s Logistic 688,213 

Gelman’s Probit 688,123 

 

Table 9 Comparison between the estimated probability and the observed one (EP) 
 iterations 

10000 15000 20000 40000 50000 

New method  0.036443 0.036446 0.036464 0.036457 0.036455 

Bayesian Logistic  0.036953 0.036944 0.036943 0.036933 0.036934 

Bayesian Probit  0.036909 0.036907 0.036908 0.036908 0.036908 

Frequentist Logistic 0.036883      

Frequentist Probit 0.036862      

Gelman’s Logistic 0.036883      

Gelman’s Probit 0.036862      

 

The comparison between the estimated probability and the observed probability 

is used to analyze further the different methods 

 
𝐸𝑃 =

∑ (𝑝̂𝑖−𝑝𝑖)
2𝐼𝑠

𝑖=1

𝐼𝑠
. 

(14) 

The EP values of the various methods are shown in Table 9. The new method 

continues to have the lowest error (Table 9), resulting better. 

 

 



  

 

 

76 

Croatian Review of Economic, Business and Social Statistics (CREBSS) 

UDK: 33;519,2; DOI: 10.1515/crebss; ISSN 1849-8531 (Print); ISSN 2459-5616 (Online) 

 

 

Vol. 4, No. 2, 2018, pp. 67-77 

Conclusion 
For a medical structure, it is fundamental to be able to predict the presence of a 

patient at an appointment or at a health check, and to determine the optimal 

number of visits to be included in a day. As showed by many empirical studies, a 

factor, which influences the rate of presence or absence of the person in a non-

monotone way, is age. Consequently, this work proposes a new link function, in 

which the probability of being present at the visit is linked to the explanatory variable 

age in a non-monotone way. The parameters of the new link function are estimated 

using the Bayesian method. The goodness of this new model is demonstrated by 

applying it to a real case and comparing it to other statistical methods. The new 

model estimates both the response variable and the probability of presence in a 

more precise way than the other compared methods. The goals of the future work 

are to refine further the new link function, for example by considering multiple 

explanatory variables together and by improving the estimation process of its 

parameters so as to lower further the MSE or EP statistics, and then to introduce the 

probabilities estimated by the new method in a system for planning visits. 
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