Omega – 3 fatty acids in schizophrenia – part I: importance in the pathophysiology of schizophrenia

Open access

Abstract

Despite the increasing offer of antipsychotic drugs, the effectiveness of pharmacotherapy in schizophrenia is still unsatisfactory. Drug resistance, lack of complete remission and the increasing risk of metabolic complications are the reasons why the new forms of therapy in schizophrenia among which unsaturated essential fatty acids omega 3 (EFAs ω-3) affecting the proper functioning of nervous system, are mentioned, are being looked for.

Fatty acids represent 50-60% of the dry weight of the brain and diet is one of the factors that influence the value of each of the fat fractions in the neuron membranes. Patients with schizophrenia tend to have irregular nutritional status concerning essential fatty acids ω-3, which might result from metabolic disorders or irregular consumption of fatty acids.

Apart from being a review of the literature on this subject, this very paper characterizes essential fatty acids ω-3, their metabolism, the most important sources in the diet and the opinions of experts in the field about the recommended intake. It pays attention to the role of essential fatty acids in both the structure and functioning of the central nervous system is, as well as their role in the pathophysiology of schizophrenia, with particular emphasis on the membrane concept by David Horrobin. The assessment of the errors in consumption and metabolism of essential fatty acids are described as well.

The evidence was found both in epidemiological and modeling studies. It supports the participation of EFAs in etiopathogenesis and pathophysiology of schizophrenia. Further research is needed, both observational and interventional, as to the role of essential fatty acids ω-3 in the functioning of the CNS as well as the development and course of schizophrenia.

1. Shen W.W. Pharmacotherapy of schizophrenia: the American current status. Keio J Med. 1994; 43(4): 192-200.

2. Geddes J., Freemantle N., Harrison P., Bebbington P. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ, 2000; 321(7273): 1371-6.

3. Bou Khalil R. Atypical antipsychotic drugs, schizophrenia, and metabolic syndrome in non-Euro-American societies. Clin Neuropharmacol. 2012; 35(3): 141-7.

4. Ventriglio A., Gentile A., Stella E., Bellomo A. Metabolic issues in patients affected by schizophrenia: clinical characteristics and medical management. Front Neurosci. 2015; 9:297.

5. Almandil N.B., Liu Y., Murray M.L., Besag F.M., Aitchison K.J., Wong I.C. Weight gain and other metabolic adverse effects associated with atypical antipsychotic treatment of children and adolescents: a systematic review and meta-analysis. Paediatr Drugs. 2013; 15(2): 139-50.

6. Masa-Font R., Fernández-San-Martín M.I., Martín López L.M., Alba Muñoz A.M., Oller Canet S., Martín Royo J., San Emeterio Echevarría L., Olona Tabueña N., Ibarra Jato M., Barroso García A., González Tejón S., Tajada Vitales C., Díaz Mújica B., Viñas Cabrera L., Sanchís Catalán R., Salvador Barbarroja T. The effectiveness of a program of physical activity and diet to modify cardiovascular risk factors in patients with severe mental illness after 3-month follow-up: CAPiCOR randomized clinical trial. Eur Psychiatry. 2015; 30(8): 1028-36.

7. Kraeuter A.K., Loxton H., Lima B.C., Rudd D., Sarnyai Z. Ketogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res. 2015; 169(1-3): 491-3.

8. Sepehrmanesh Z., Kolahdooz F., Abedi F., Mazroii N., Assarian A., Asemi Z., Esmaillzadeh A. Vitamin D Supplementation Affects the Beck Depression Inventory, Insulin Resistance, and Biomarkers of Oxidative Stress in Patients with Major Depressive Disorder: A Randomized, Controlled Clinical Trial. J Nutr. 2016; 146(2): 243-8.

9. Jacka F.N., Ystrom E., Brantsaeter A.L., Karevold E., Roth C., Haugen M., Meltzer H.M., Schjolberg S., Berk M. Maternal and early postnatal nutrition and mental health of offspring by age 5 years: a prospective cohort study. J Am Acad Child Adolesc Psychiatry. 2013; 52(10): 1038-47.

10. Jacka F.N., Cherbuin N., Anstey K.J., Butterworth P. Dietary patterns and depressive symptoms over time: examining the relationships with socioeconomic position, health behaviours and cardiovascular risk. PLoS One. 2014; 9(1): e87657.

11. Jacka F.N, Cherbuin N., Anstey K.J., Sachdev P., Butterworth P. Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med. 2015; 13: 215.

12. Logan A.C., Jacka FN. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol. 2014; 24: 33:22.

13. Mossaheb N., Schloegelhofer M., Schaefer M.R., Fusar-Poli P., Smesny S., McGorry P., Berger G., Amminger GP. Polyunsaturated fatty acids in emerging psychosis. Curr Pharm Des. 2012; 18(4): 576-91.

14. Appleton K.M., Sallis H.M., Perry R., Ness A.R., Churchill R. ω-3 Fatty acids for major depressive disorder in adults: an abridged Cochrane review. BMJ Open. 2016; 6(3): e010172.

15. Ratnayake W.M., Galli C. Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper. Ann Nutr Metab. 2009; 55(1-3): 8-43.

16. Swanson D., Block R., Mousa S.A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012; 3(1): 1-7.

17. Baker E.J., Miles E.A., Burdge G.C., Yaqoob P., Calder P.C. Metabolism and Functional Effects of Plant-Derived Omega-3 Fatty Acids in Humans. Prog Lipid Res. 2016 Aug 2. pii: S0163-7827(16)30030-3.

18. Nakamura M.T., Nara T.Y. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot Essent Fatty Acids. 2003; 68(2): 145-50.

19. Zhang J.Y., Kothapalli K.S., Brenna J.T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr Opin Clin Nutr Metab Care. 2016; 19(2): 103-10.

20. Yao M., Hou L., Xie T., Liu Y., Dai D., Shi Y., Lian K., Jiang L. The biosynthesis of DHA is increased in the liver of diabetic rats induced by high-fat diets and STZ, in correlation with increased activity of peroxisomal β-oxidation. Eur. J. Lipid Sci. Technol. 2016; 118: 137–146..

21. Rapoport S.I., Rao J.S., Igarashi M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids. 2007; 77(5-6): 251-61.

22. Hussein N., Ah-Sing E., Wilkinson P., Leach C., Griffin B.A., Millward D.J. Long-chain conversion of [13C]linoleic acid and alpha-linolenic acid in response to marked changes in their dietary in-take in men. J Lipid Res. 2005; 46(2): 269-80.

23. Pawlosky R., Hibbeln J., Lin Y., Salem N.Jr. n-3 fatty acid metabolism in women. Br J Nutr. 2003; 90(5): 993-4.

24. Liou Y.A., Król D.J., Zibrik D., Innis S.M. Decreasing linoleic acid with constant alpha-linolenic acid in dietary fats increases (n-3) eicosapentaenoic acid in plasma phospholipids in healthy men. J Nutr 2007; 137(4): 945-52.

25. Kang Z.B., Ge Y., Chen Z., Cluette-Brown J., Laposata M., Leaf A., Kang J.X. Adenoviral gene transfer of Caenorhabditis elegans n--3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc Natl Acad Sci U S A. 2001; 98(7): 4050-4.

26. Simopoulos A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol Neurobiol. 2011; 44(2): 203-15.

27. Michael-Titus T.A. Omega-3 Fatty Acids: Their Neuroprotective and Regenerative Potential in Traumatic Neurological Injury. Clin Lipidology. 2009; 4(3): 343-353.

28. Hadzhieva B., Dimitrov M., Obreshkova D., Petkova V., Atanasov P., Kasnakova P. Omega-3 polyunsaturated fatty acids metabolism and prevention of some socially significant diseases. WJPPS. 2016; 5(7): 304-315.

29. Kołodziejczyk M. Consumption of fish and fishery products in Poland--analysis of benefits and risks. Rocz Panstw Zakl Hig. 2007; 58(1): 287-93.

30. Kunachowicz H., Nadolna I., Przygoda B., Iwanow K. Tabele wartości odżywczej produktów spożywczych i potraw. Wydanie III rozszerzone i uaktualnione. Instytut Żywności i Żywienia, Warszawa 2005.

31. WHO Expert consultation. Fats and Fatty Acids in Human Nutrition. Interim Summary of Conclusion and Dietary Recommendations on Total Fat and Fatty Acids. November 10-14, 2008 WHO HQ, Geneva.

32. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal. 2010; 8(3): 1461.

33. Szponar L., Mojska H., Ołtarzewski M. Tłuszcze. W: Jarosz M. red., Normy żywienia dla populacji polskiej – nowelizacja, Warszawa; Instytut Żywności i Żywienia, 2012, s. 48.

34. Freeman M.P., Hibbeln J.R., Wisner K.L., Davis J.M., Mischoulon D., Peet M., Keck P.E. Jr., Marangell L.B., Richardson A.J., Lake J., Stoll A.L. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006; 67(12): 1954-67.

35. Demar J.C.Jr., Ma K., Chang L., Bell J.M., Rapoport S.I. alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. J Neurochem. 2005; 94(4): 1063/76.

36. Ouellet M., Emond V., Chen C.T., Julien C., Bourasset F., Oddo S., LaFerla F., Bazinet R.P., Calon F. Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: An in situ cerebral perfusion study. Neurochem Int. 2009; 55(7): 476-82.

37. Rapoport S.I., Ramadan E., Basselin M. Docosahexaenoic acid (DHA) incorporation into the brain from plasma, as an in vivo biomarker of brain DHA metabolism and neurotransmission. Prostaglandins Other Lipid Mediat. 2011; 96(1-4): 109-13.

38. Bosch-Bouju C., Sophie Layé S. Dietary Omega-6/Omega-3 and Endocannabinoids: Implications for Brain Health and Diseases. Cannabinoids in Health and Disease, Prof. Rosaria Meccariello (Ed.), InTech, DOI: 10.5772/62498. Available from: http://www.intechopen.com/books/cannabinoids-in-health-and-disease/dietary-omega-6-omega-3-and-endocannabinoids-implications-for-brain-health-and-diseases.

39. Chen C.T., Domenichiello A.F., Trépanier M.O,, Liu Z., Masoodi M., Bazinet R.P. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. J Lipid Res. 2013; 54(9): 2410-22.

40. Strokin M., Sergeeva M., Reiser G. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol. 2003; 139(5): 1014-22.

41. Gururajan A., Malone D.T. Does cannabidiol have a role in the treatment of schizophrenia? Schizophr Res. 2016. pii: S0920-9964(16)30289-4.

42. Zeman M., Jirak R., Vecka M., Raboch J., Zak A. N-3 polyunsaturated fatty acids in psychiatric diseases: mechanisms and clinical data. Neuro Endocrinol Lett. 2012; 33(8): 736-48.

43. Wainwright P.E. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc. 2002; 61(1): 61-9.

44. Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008; 233(6): 674-88.

45. Kitson A.P., Smith T.L., Marks K.A., Stark K.D. Tissue-specific sex differences in docosahexaenoic acid and Delta6-desaturase in rats fed a standard chow diet. Appl Physiol Nutr Metab, 2012; 37(6): 1200-11.

46. Chen C.T., Bazinet R.P. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids. 2015; 92: 33-40.

47. Kitajka K., Puskás L.G., Zvara A., Hackler L.Jr., Barceló-Coblijn G., Yeo Y.K., Farkas T. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A. 2002; 99(5):2 619-24.

48. McNamara R.K., Ostrander M., Abplanalp W., Richtand N.M., Benoit S.C., Clegg D.J. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids. 2006 Oct; 75(4-5): 237-57.

49. Church M.W., Jen K.L., Dowhan L.M., Adams B.R., Hotra J.W. Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups. Neurotoxicol Teratol. 2008; 30(2):107-17.

50. Louchami K., Zhang Y., Carpentier Y.A., Chardigny J.M., Malaisse W.J., Herchuelz A., Sener A. Carbamylcholine and ouabain effects on Ca2+ handling and insulin release in islets from rats depleted in long-chain polyunsaturated omega 3 fatty acids. Endocrine. 2007; 32(2): 148-54.

51. Nirwane A., Pawar V., Majumdar A. Therapeutic interventions using a combination of Telmisartan and omega 3-fatty acids in sodium arsenite-induced vascular endothelial dysfunction in rats: modulation through ATP-sensitive K+ channels and eNOS. J Complement Integr Med. 2015; 12(2): 143-51.

52. Calderon F., Kim H.Y. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem. 2004; 90(4): 979-88.

53. Cao D., Kevala K., Kim J., Moon HS., Jun S.B., Lovinger D., Kim H.Y. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem. 2009; 111(2): 510-21.

54. Brenes O., Giachello C.N., Corradi A.M., Ghirardi M., Montarolo P.G. Synapsin knockdown is associated with decreased neurite outgrowth, functional synaptogenesis impairment, and fast high-frequency neurotransmitter release. J Neurosci Res. 2015; 93(10): 1492-506.

55. He C., Qu X., Cui L., Wang J., Kang J.X. Improved spatial learning performance of fat-1 mice is associated with enhanced neuro-genesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A. 2009; 106(27): 11370-5.

56. Dyall S.C., Michael G.J., Michael-Titus A.T. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res. 2010; 88(10): 2091-102.

57. Abdel-Maksoud S.M., Hassanein S.I., Gohar N.A., Attia S.M., Gad M.Z. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids. Nutr Neurosci. 2016; 1:1-6.

58. Kim H.Y., Spector A.A,, Xiong Z.M. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Mediat. 2011; 96(1-4): 114-20.

59. Yao C., Zhang J., Chen F., Lin Y. Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways. Mol Med Rep. 2013; 8(2): 543-50.

60. Cortina M.S., He J., Russ T., Bazan N.G., Bazan H.E. Neuroprotectin D1 restores corneal nerve integrity and function after damage from experimental surgery. Invest Ophthalmol Vis Sci. 2013; 54(6): 4109-16.

61. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids. 2006; 75(4-5): 259-69.

62. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.C., Chalon S. Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J Lipid Res. 2000; 41(1): 32-40.

63. Zimmer L., Vancassel S., Cantagrel S., Breton P., Delamanche S., Guilloteau D., Durand G., Chalon S. The dopamine mesocorticolimbic pathway is affected by deficiency in n-3 polyunsaturated fatty acids. Am J Clin Nutr. 2002; 75(4): 662-7.

64. Aïd S., Vancassel S., Poumès-Ballihaut C., Chalon S., Guesnet P., Lavialle M. Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J Lipid Res. 2003; 44(8): 1545-51.

65. Kodas E., Galineau L., Bodard S., Vancassel S., Guilloteau D., Besnard J.C., Chalon S. Serotoninergic neurotransmission is affected by n-3 polyun-saturated fatty acids in the rat. J Neurochem. 2004; 89(3): 695-702.

66. Horrobin D.F. Schizophrenia as a prostaglandin deficiency disease. Lancet. 1977; 1(8018): 936-7.

67. Horrobin, D.F., Glen, A.I, Hudson, C.J. Possible relevance of phospholipid abnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Med. Hypotheses. 1995; 45(6): 605-613.

68. Horrobin D.F. Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins Leukot Essent Fatty Acids. 1996; 55(1-2): 3-7.

69. Horrobin D.F. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 1998; 30(3): 193-208.

70. Horrobin D.F., Manku M.S., Hillman H., Iain A., Glen M. Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry. 1991; 30(8): 795-805.

71. McNamara R.K., Jandacek R., Rider T., Tso P., Hahn C.G., Richtand N.M., Stanford K.E. Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr Res. 2007; 91(1-3): 37-50.

72. Taha A.Y, Cheon Y., Ma K., Rapoport S.I., Rao J.S. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res. 2013; 47(5): 636-43.

73. Hamazaki K., Choi K.H., Kim H.Y. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. J Psychiatr Res. 2010; 44(11): 688-93.

74. Hamazaki K., Hamazaki T., Inadera H. Abnormalities in the fatty acid composition of the postmortem entorhinal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Res. 2013; 210(1): 346-50.

75. Hamazaki K., Maekawa M., Toyota T., Iwayama Y., Dean B., Hamazaki T., Yoshikawa T. Fatty acid composition and fatty acid binding protein expression in the postmortem frontal cortex of patients with schizophrenia: A case-control study. Schizophr Res. 2016; 171(1-3): 225-32.

76. Frimmel K., Vlkovicova J., Sotnikova R., Navarova J., Bernatova I., Okruhlicova L. The effect of omega-3 fatty acids on expression of connexin-40 in Wistar rat aorta after lipopolysaccharide administration. J Physiol Pharmacol. 2014; 65(1): 83-94.

77. Zendedel A., Habib P., Dang J., Lammerding L., Hoffmann S., Beyer C., Slowik A. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J Neuroimmunol. 2015; 278:200-11.

78. Rothermundt M., Arolt V., Bayer T.A. Review of immunological and immunopathological findings in schizophrenia. Brain Behav Immun. 2001; 15(4): 319-39.

79. Müller N., Weidinger E., Leitner B., Schwarz M.J. The role of inflammation in schizophrenia. Front Neurosci. 2015; 9:372.

80. Severance E.G, Alaedini A., Yang S., Halling M., Gressitt K.L., Stallings C.R., Origoni A.E., Vaughan C., Khushalani S., Leweke F.M., Dickerson F.B., Yolken R.H. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res. 2012; 138(1): 48-53.

81. Kelly J.R, Borre Y., O’ Brien C., Patterson E., El Aidy S., Deane J., Kennedy P.J., Beers S., Scott K., Moloney G., Hoban A.E., Scott L., Fitzgerald P., Ross P., Stanton C., Clarke G., Cryan J.F., Dinan T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016; 82: 109-118.

82. Prescott S.L. Role of dietary immunomodulatory factors in the development of immune tolerance. Nestle Nutr Workshop Ser Pediatr Program. 2009; 64: 185-94.

83. McNamara R.K., Jandacek R., Rider T., Tso P., Cole-Strauss A., Lipton J.W. Omega-3 fatty acid deficiency increases constitutive proinflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Essent Fatty Acids. 2010; 83(4-6): 185-91.

84. Ferrucci L., Cherubini A., Bandinelli S., Bartali B., Corsi A., Lauretani F., Martin A., Andres-Lacueva C., Senin U., Guralnik J.M. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006; 91(2): 439-46.

85. Li Q., Leung Y.O., Zhou I., Ho L.C., Kong W., Basil P., Wei R., Lam S., Zhang X., Law A.C., Chua S.E., Sham P.C., Wu E.X., McAlonan G.M. Dietary supplementation with n-3 fatty acids from weaning limits brain biochemistry and behavioural changes elicited by prenatal exposure to maternal inflammation in the mouse model. Transl Psychiatry. 2015; 5:e641.

86. Barker D.J., Winter P.D., Osmond C., Margetts B., Simmonds S.J. Weight in infancy and death from ischaemic heart disease. Lancet. 1989; 2(8663): 577-80.

87. Lumey L., Stein A.D., Kahn H.S., van der Palde Bruin K.M., Blauw G., Zybert P.A., Susser E.S. Cohort profile: The Dutch Hunger Winter Families Study. Int J Epidemiol. 2007; 36(6): 1196-204.

88. Lumey L., Stein A.D., Kahn H.S., Romijn J. Lipid profiles in middleaged men and women after famine exposure during gestation: The Dutch Hunger Winter Families Study. Am J Clin Nutr. 2009; 89(6): 1737-43

89. de Rooij S., Painter R., Roseboom T., Phillips D., Osmond C., Barker D., Tanck M., Michels R., Bossuyt P., Bleker O. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006; 49(4): 637-43.

90. Kodas E., Vancassel S., Lejeune B., Guilloteau D., Chalon S. Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: critical role of developmental stage. J Lipid Res. 2002; 43(8): 1209-19.

91. Dijck-Brouwer D.A., Hadders-Algra M., Bouwstra H., Decsi T., Boehm G., Martini I.A., Boersma E.R., Muskiet F.A. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition. Prostaglandins Leukot Essent Fatty Acids. 2005; 72(1): 21-8.

92. Harper K.N., Hibbeln J.R., Deckelbaum R., Quesenberry C.P. Jr., Schaefer C.A., Brown A.S. Maternal serum docosahexaenoic acid and schizophrenia spectrum disorders in adult offspring. Schizophr Res. 2011; 128(1-3): 30–36.

93. Torpy J.M., Lynm C., Glass R.M. Eating fish: health benefits and risks. JAMA. 2006; 296(15): 1926.

94. Messamore E., Hoffman W.F., Janowsky A. The niacin skin flush abnormality in schizophrenia: a quantitative dose-response study. Schizophr Res. 2003; 62(3): 251-8.

95. Nadalin S., Buretić-Tomljanović A., Rubesa G., Tomljanović D., Gudelj L. Niacin skin flush test: a research tool for studying schizophrenia. Psychiatr Danub. 2010; 22(1): 14-27.

96. Górniak M., Rybakowski J. Test niacynowy w schizofrenii: przegląd piśmiennictwa i wstępne wyniki badań własnych. Farmakoterapia w Psychiatrii i Neurologii. 2012; 1: 7–16.

97. Kashyap M.L., McGovern M.E., Berra K., Guyton J.R., Kwiterovich P.O., Harper W.L., Toth P.D., Favrot L.K., Kerzner B., Nash S.D., Bays H.E,, Simmons P.D. Long-term safety and efficacy of a once-daily niacin/lovastatin formulation for patients with dyslipidemia. Am J Cardiol. 2002; 89(6): 672-8.

98. Horrobin D.F. Schizophrenia: a biochemical disorder? Biomedicine. 1980; 32(2): 54-5.

99. Yao J.K., Dougherty G.G. Jr., Gautier C.H., Haas G.L., Condray R., Kasckow J.W., Kisslinger B.L., Gurklis J.A., Messamore E. Prevalence and Specificity of the Abnormal Niacin Response: A Potential Endophenotype Marker in Schizophrenia. Schizophr Bull. 2016; 42(2): 369-76.

100. Ross B.M., Hughes B., Turenne S., Seeman M., Warsh J.J. Reduced vasodilatory response to methylnicotinate in schizophrenia as assessed by laser Doppler flowmetry. Eur Neuropsychopharmacol. 2004; 14(3): 191-7.

101. Lin S.H., Liu C.M., Chang S.S., Hwu H.G., Liu S.K., Hwang T.J., Hsieh M.H., Guo S.C., Chen W.J. Familial aggregation in skin flush response to niacin patch among schizophrenic patients and their nonpsychotic relatives. Schizophrenia Bull. 2007; 33(1): 174-82.

102. Smesny S., Rosburg T., Baur K., Rudolph N., Sauer H. Cannabinoids influence lipid-arachidonic acid pathways in schizophrenia. Neuropsychopharmacology. 2007; 32(10): 2067-73.

103. Smesny S., Riemann S., Riehemann S., Bellemann M.E., Sauer H. Quantitative measurement of induced skin reddening using optical reflection spectroscopy- -methodology and clinical application. Biomed Tech (Berl) 2001; 46(10): 280-6.

104. Smesny S., Rosburg T., Klemm S., Riemann S., Baur K., Rudolph N., Grunwald S., Sauer H. The influence of age and gender on niacin skin test results - implications for the use as a biochemical marker in schizophrenia. J Psychiatr Res. 2004; 38(5): 537-43.

105. Chang S.S., Liu C.M., Lin S.H., Hwu H.G., Hwang T.J., Liu S.K., Hsieh M.H., Guo S.C., Chen W.J. Impaired flush response to niacin skin patch among schizophrenia patients and their nonpsychotic relatives: The effect of genetic loading. Schizophr Bull. 2009; 35(1): 213-21.

106. Gronowska-Senger A., Metody oceny stanu odżywienia, W: Gronowska-Senger A. red., Zarys oceny żywienia, Warszawa; Wyd. SGGW: 2013, s. 57-77.

107. Shiraishi M., Haruna M., Matsuzaki M., Murayama R., Sasaki S. The biomarker-based validity of a brief-type diet history questionnaire for estimating eicosapentaenoic acid and docosahexaenoic acid intakes in pregnant Japanese women. Asia Pac J Clin Nutr. 2015; 24(2): 316-22.

108. Praagman J., Adolphs A.P., van Rossum C.T., Sluijs I., van der Schouw Y.T., Beulens J.W. Reproducibility and relative validity of a FFQ to estimate the intake of fatty acids. Br J Nutr. 2016; 115(12): 2154-61.

109. Frankenfeld C.L., Poudrier J.K., Waters N.M., Gillevet P.M., Xu Y. Dietary intake measured from a self-administered, online 24-hour recall system compared with 4-day diet records in an adult US population. J Acad Nutr Diet. 2012; 112(10): 1642-7.

110. Thompson E.F, Subar F.A. Dietary Assessment Methodology. W: Coulston M.A., Boushey J.C., Ferruzzi M. Nutrition in the Prevention and Treatment of Disease (Third Edition)., Oxford; Elsevier: 2013. s. 5-30.

111. Pereira-da-Silva L., Cabo C., Moreira A.C., Virella D., Guerra T., Camoes T., Silva A.R., Neves R., Ferreira G.C. The adjusted effect of maternal body mass index, energy and macronutrient intakes during pregnancy, and gestational weight gain on body composition of full-term neonates. Am J Perinatol. 2014; 31(10): 875-82.

112. Hedelin M., Löf M., Olsson M., Lewander T., Nilsson B., Hultman C.M., Weiderpass E. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33,000 women from the general population. BMC Psychiatry. 2010;10: 38.

113. Henderson D.C., Borba C.P., T.B., Boxill R., Nguyen D.D., Culhane M.A., Louie P., Cather C., Eden Evins A., Freudenreich O., Taber S.M., Goff D.C. Dietary intake profile of patients with schizophrenia. Ann Clin Psychiatry. 2006; 18(2): 99-105.

114. Strassnig M., Singh Brar J., Ganguli R. Dietary fatty acid and antioxidant intake in community-dwelling patients suffering from schizophrenia. Schizophr Res. 2005; 76(2-3): 343-51.

115. Konarzewska B., Stefańska E., Wendołowicz A., Cwalina U., Golonko A., Małus A., Kowzan U., Szulc A., Rudzki L., Ostrowska L. Visceral obesity in normal-weight patients suffering from chronic schizophrenia. BMC Psychiatry. 2014; 14: 35.

116. Stokes C., Peet M. Dietary sugar and polyunsaturated fatty acid consumption as predictors of severity of schizophrenia symptoms. Nutr Neurosci. 2004; 7(4): 247–249.

117. Gronowska-Senger A., Charakterystyka i zasady wyboru metod, W: Gronowska-Senger A. red., Przewodnik metodyczny badań sposobu żywienia., Warszawa; Wyd. Komitetu Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: 2013, s. 5-16.

118. Hodson L., Skeaff C.M., Fielding B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res. 2008; 47(5): 348-80.

119. Sun Q., Ma J., Campos H., Hankinson S.E., Hu F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr. 2007; 86(1): 74-81.

120. van der Kemp W.J., Klomp D.W., Kahn R.S., Luijten P.R., Hulshoff Pol H.E. A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. Schizophr Res. 2012; 141(2-3): 153-61.

121. Hoen W.P., Lijmer J.G., Duran M., Wanders R.J., van Beveren N.J., de Haan L. Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: a meta-analysis. Psychiatry Res. 2013; 207(1-2): 1-12.

122. Hibbeln J.R., Makino K.K., Martin C.E., Dickerson F., Boronow J., Fenton W.S. Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Biol Psychiatry. 2003; 53(5): 431-41.

123. Sumiyoshi T., Higuchi Y., Matsui M., Itoh H., Uehara T., Itoh T., Arai H., Takamiya C., Suzuki M., Kurachi M. Membrane fatty acid levels as a predictor of treatment response in chronic schizophrenia. Psychiatry Res. 2011; 186(1): 23-7.

124. Medema S., Mocking R.J., Koeter M.W., Vaz F.M., Meijer C., de Haan L., van Beveren N.J.; GROUP;Genetic Risk and Outcome of Psychosis investigators, Kahn R., de Haan L., van Os J., Wiersma D., Bruggeman R., Cahn W., Meijer C., Myin-Germeys I. Levels of Red Blood Cell Fatty Acids in Patients With Psychosis, Their Unaffected Siblings, and Healthy Controls. Schizophr Bull. 2016; 42(2): 358-68.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 794 574 15
PDF Downloads 167 142 16