Investigation of mixing time in liquid under influence of rotating magnetic field

Open access

Abstract

The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.

Bouaifi M., Roustan M, 2001. Power consumption, mixing time and homogenisation Energy in dual-impeller agitated gas-liquid reactors. Chem. Eng. Process., 40, 87-95. DOI: 10.1016/S0255-2701(00)00128-8.

Bouaifi M., Roustan M., 2001. Power consumption, mixing time and homogenization energy in dual-impeller agitated gas-liquid reactors. Chem. Eng. Process., 40, 87-95. DOI: 10.1016/S0255-2701(00)00128-8.

Cascaval D., Galaction A.-I., Oniscu C., Ungureanu F., 2004. Modeling of mixing in stirred bioreactors 4. Mixing time for aerated bacteria, yeasts and fungus broths. Chem. Indust., 58, 128-137. DOI: 10.2298/HEMIND0403128C.

Ciechańska D., Struszczyk H., Gruzińska K., 1998. Modification of bacterial cellulose. Fibres Text. East. Eur., 4(23), 61-65.

Dahlberg E., 1972. On the action of a rotating magnetic field on a conducting liquid. Aktiebolaget Atomenergi, Studsvik, Nyköping, Sweden.

Fijałkowski K., Żywicka A., Drozd R., Niemczyk A., Junka A.F, Peitler D., Kordas M., Konopacki M., Szymczyk P., El Fray M., Rakoczy R., 2015. Modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohyd. Polym., 133, 52-60. DOI: 10.1016/j.carbpol.2015.07.011.

Gaafar E.-S.A., Hanafy M.S., Tohamy E.Y., Ibrahim M.H., 2008. The effect of electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Rom. J. Biophys., 18, 145–169.

Hadjiev D., Sabiri N.E., Zanati A., 2006. Mixing time in bioreactors under aerated conditions. Biochem. Eng. J., 27, 323-330. DOI: 10.1016/j.bej.2005.08.009.

Harnby N., Edwards M.F., Nienow A.W. Mixing in the process industries. Butterworth-Heinemann, Bosotn, 2000.

Hiraoka S., Kato Y., Tada Y., Ozaki N., Murkami Y., Lee Y.S., 2001. Power consumption and mixing time in an agitated vessel with double impeller. Chem. Eng. Res. Des., 79, 805-810. DOI: 10.1205/02638760152721613.

Hristov J., 2010. Magnetic field assisted fluidization—a unified approach. Part 8. Mass transfer: Magnetically assisted bioprocess. Rev. Chem. Eng., 26, 55–128. DOI: 10.1515/REVCE.2010.006.

Jaworski Z., Bujalski W., Otomo N., Nienow A.W., 2000. CFD study of homogenization with dual Rushton turbines — Comparison with experimental results. Part I: Initial studies. Chem. Eng. Res. Des., 78, 327–333. DOI: 10.1205/026387600527437.

King R.L., Hiller R.A., Tatterson G.B., 1988. Power consumption in a mixer. AIChE J., 34, 506-509. DOI: 10.1002/aic.690340320.

Konopacki M., Frąckowiak A., Tabero P., Fijałkowski K., Rakoczy R., 2014. Studies of a mixing process by using the various types of magnetic particles as micro-stirrers. Technical Transactions. Chemistry, 24, 45-54.

Kordas M., Story G., Konopacki M., Rakoczy R., 2013. Study of mixing time in a liquid vessel with rotating and reciprocating agitator. Ind. Eng. Chem. Res., 52, 13818-13828. DOI: 10.1021/ie303086r.

Kushalkar K.B., Pangarkar V.G., 1994. Particle — liquid mass transfer in a bubble column with a draft tube. Chem. Eng. Sci., 49, 139-144. DOI:10.1016/0009-2509(94)85041-0.

Magelli F., Montante G., Pinelli D., Paglianti A., 2013. Mixing time in high aspect ratio vessels stirred with multiple impellers. Chem. Eng. Sci., 101, 712-720. DOI: 10.1016/j.ces.2013.07.022.

Manjula P., Kalaichelvi P., Dheenathayalan K., 2010. Development of mixing time correlation for a double jet mixer. J. Chem. Technol. Biot., 85, 115-120. DOI: 10.1002/jctb.2274.

Manna L., 1997. Comparison between psychical and chemical methods for the measurement of mixing time. Chem. Eng. J., 67, 167–173. DOI: 10.1016/S1385-8947(97)00059-4.

Masiuk S., Rakoczy R., 2007. Power consumption, mixing time, heat and mass transfer measurements for liquid vessels that are mixed using reciprocating multiplates agitators. Chem. Eng. Process., 46, 89–98. DOI: 10.1016/j.cep.2006.05.002.

Masiuk S., Rakoczy R., Kordas M., 2008. Comparison density of maximal energy for mixing process using the same agitator in rotational and reciprocating movements. Chem. Eng. Process., 47, 1252–1260. DOI: 10.1016/j.cep.2007.04.004.

Mehedintu M., Berg H., 1997. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic filed parameters. Bioelectroch. Bioener., 43, 67–70. DOI: 10.1016/S0302-4598(96)05184-7.

Moffatt H.K., 1965. On fluid flow induced by rotating magnetic field. J. Fluid. Mech., 22(3), 521-528. DOI: 10.1017/S0022112065000940.

Moffatt H.K., 1991. Electromagnetic stirring. Phys. Fluids A, 3(5), 1336-1343. DOI: 10.1063/1.858062.

Oniscu C., Galaction A-I., Cascaval D., Ungureanu F., 2002. Modeling of mixing in stirred bioreactors: 2. Mixing time for non-aerated broths. Biochem. Eng. J., 12, 61-69. DOI: 10.1016/S1369-703X(02)00042-6.

Rakoczy R., 2013. Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field. Chem. Eng. Process., 66, 1-11. DOI: 10.1016/j.cep.2013.01.012.

Rivera Ch., Foucault S., Heniche M., Espinosa-Solares T., Tanguy P. A., 2006. Mixing analysis in a coaxial mixer. Chem. Eng. Sci., 61, 2895-2907. DOI: 10.1016/j.ces.2005.11.045.

Story G., Kordas M., Rakoczy R., 2016. Correlations for mixing energy in processes using Rushton turbine mixer. Chem. Pap., 70, 747-756. DOI: 10.1515/chempap-2016-0008.

Stręk F. Mieszanie i mieszalniki. WNT, Warszawa, 1981.

Szoplik J., Karcz J., 2008. Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chem. Pap., 62, 70-77. DOI: 10.2478/s11696-007-0081-9.

Woziwodzki Sz., Broniarz-Press L., Ochowiak M., 2010. Effect of Eccentricity on transitional mixing in vessel equipped with turbine impellers. Chem. Eng. Res Des., 88, 1607-1614. DOI: 10.1016/j.cherd.2010.04.007.

Zadghaffari R., Moghaddas J. S., Revstedt J., 2007. A mixing study in a double-Rushton stirred tank. Comput. Chem. Eng., 33, 1240-1246. DOI: 10.1016/j.comp-chemeng.2009.01.017.

Zlotarnik M. Stirring: Theory and practice. Wiley-VCH, Weinheim, 2001.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 24
PDF Downloads 42 42 6