The Effect of Disaccharide Concentration in a Liquid Binder on The Mechanisms and Kinetics of Disc Granulation

Open access

Abstract

Analysis of granulation kinetics was carried out using a laboratory disc granulator with a diameter D of 0.5 m. A liquid binder was delivered to the tumbling bed at a constant flow rate with a nozzle generating droplets with a size of approx. 4-5 mm. Fine-grained chalk was used as a model of raw material and water or disaccharide solution with concentrations of 20 - 40% as a wetting liquid. Different times of droplet delivery ranging from 2 to 6 min were utilized. Granulometric composition of the bed for selected lengths of process, bed moisture and the moisture of individual size-fractions were assessed. Mass of granulated material, which was transferred from nuclei fraction to other size fractions was determined on the basis of mass balance analysis and the assessment of liquid migration between fractions. The influence of disaccharide concentration in wetting liquid on the aforementioned phenomena was also examined.

Abberger T., Seo A., Schaefer T., 2002. The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. Int. J. Pharm., 249, 185-197. DOI: 10.1016/S0378- 5173(02)00530-6.

Butensky M., Hyman D., 1971. Rotary drum granulation. An experimental study of the factors affecting granule size. Ind. Eng. Chem. Fundam., 10, 212-219. DOI:10.1021/i160038a005.

Capes C.E., Danckwerts P.V., 1965. Granule formation by the agglomeration of damp powders: Part 1. The mechanism of granule growth. Trans. Inst. Chem. Eng., 43, 116-124.

Charles-Williams H.R., Wengeler R., Flore K., Feise H., Hounslow M.J., Salman A.D., 2011, Granule nucleation and growth: Competing drop spreading and infiltration processes. Powder Technol., 206, 63-71. DOI: 10.1016/j.powtec.2010.06.013.

Gluba T., Heim A., Kochanski B. 1990. Application of the theory of moments in the estimation of powder granulation of different wettabilities. Powder Handling and Processing, 2, 323-326.

Hapgood K.P., Litster J.D., Biggs S.R., Howes T., 2002. Drop penetration into porous powder beds. J. Colloid Interface Sci., 253, 353-366. DOI: 10.1006/jcis.2002.8527.

Hapgood K.P., Litster J.D., Smith R., 2003. Nucleation regime map for liquid bound granules. AIChE J., 49, 350-361. DOI: 10.1002/aic.690490207.

Hapgood K.P., Litster J.D., White E.T., Mort P.R., Jones D.G., 2004. Dimensionless spray flux in wet granulation: Monte Carlo simulations and experimental validation. Powder Technol. 141, 20-30. DOI: 10.1016/j.powtec.2004.02.005.

Heim A., Solecki M., 2000. Dezintegracja komórek mikroorganizmów w przepływowych młynach mieszalnikowych. Inż. Chem. Proces., 21, 311-327.

Hoornaert F., Wauters P.A.L., Meesters G.M.H., Pratsinis S.E., Scarlett B., 1998. Agglomeration behaviour of powders in a Lödige mixer granulator. Powder Technol., 96, 116-128. DOI: 10.1016/S0032-5910(97)03364-0.

Iveson S.M., Litster J.D., Hapgood K.P., Ennis B.J., 2001. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol., 117, 3-39. DOI: 10.1016/S0032- 5910(01)00313-8.

Jaiyeoba K.T.,. Spring M.S, 1980. The granulation of ternary mixtures: The effect of the wettability of the powders. J. Pharm. Pharmacol., 32, 386-388. DOI: 10.1111/j.2042-7158.1980.tb12948.x.

Knight P.C., Instone T., Pearson J.M.K., Hounslow M.J., 1998. An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration. Powder Technol., 97, 246-257. DOI: 10.1016/S0032-5910(98)00031-X.

Le P.K., Avontuur P., Hounslow M.J., Salman A.D., 2011. A microscopic study of granulation mechanisms and their effect on granule properties. Powder Technol., 206, 18-24. DOI: 10.1016/j.powtec.2010.06.014.

Litster J.D., Hapgood K.P., Michaels J.N, Sims A., Roberts M., Kameneni T., Hsu T., 2001. Liquid distribution in wet granulation: Dimensionless spray flux. Powder Technol., 114, 32-39. DOI: 10.1016/S0032-5910(00)00259-X.

Litster J.D., Ennis B.J., 2004. The science and engineering of granulation processes. Particle Technology Series. B. Scarlett, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Newitt D.M., Conway-Jones J.M., 1958. A contribution to the theory and practice of granulation. Trans. I. Chem. Eng., 36, 422-441.

Nguyen T., Shen W., Hapgood K., 2009. Drop penetration time in heterogeneous powder beds. Chem. Eng. Sci., 64, 5210-5221. DOI: 10.1016/j.ces.2009.08.038.

Obraniak A., Gluba T., 2012. A model of agglomerate formation during bed wetting in the process of disk granulation. Chem. Process Eng., 33, 153-165. DOI: 10.2478/v10176-012-0014-1.

Obraniak A., 2017. Analysis of the phenomenon of nuclei mass transfer during the disc granulation. Przemysł Chemiczny, 96, 241-244. DOI: 10.15199/62.2017.1.30.

Olejnik T.P., 2013. Selected mineral materials grinding rate and its effect on product granulometric composition. Physicochem. Probl. Miner. Process., 40, 407−418. DOI: 10.5277/ppmp130203.

Pearson J.M.K., Hounslow M.J., Instone T., Knight P.C., 1998. Granulation kinetics: the confounding of particle size and age. World Congress on Particle Technology, Brighton, UK, I. Chem. E, paper 86.

Ramachandran R., Immanuel C.D., Stepanek F., Litster J.D., Doyle F.J., 2009. A mechanistic model for breakage in population balances of granulation: Theoretical kernel development and experimental validation. Chem. Eng. Res. Des., 87, 598-614. DOI: 10.1016/j.cherd.2008.11.007.

Ramaker J.S., Jelgersma M.A., Vonk P., Kossen N.W.F., 1998. Scale-down of a high shear pelletisation process: flow profile and growth kinetics. Int. J. Pharm., 166, 89-97. DOI: 10.1016/S0378-5173(98)00030-1.

Rankell A.S., Scott M.W., Lieberman H.A., Chow F.S., Battista J.V., 1964. Continuous production of tablet granulations in fluidized bed II. Operation and performance of equipment. J. Pharm. Sci., 53, 320-324. DOI: 10.1002/jps.2600530316.

Scott A.C., Hounslow M.J., Instone T., 2000. Direct evidence of heterogeneity during high-shear granulation. Powder Technol., 113, 205-213. DOI:10.1016/s0032-5910(00)00354-5.

Schaafsma S.H., Vonk P., Segers P., Kossen N.W.F., 1998. Description of agglomerate growth. Powder Technol., 97, 183-190. DOI: 10.1016/S0032-5910(97)03399-8.

Schaefer T., Wørts O., 1977. Control of fluidised bed granulation II: Estimation of droplet size of atomised binder solutions. Arch. Pharam. Chem., 5, 178-193.

Schaefer T., Mathiesen C., 1996. Melt pelletization in a high shear mixer: IX. Effects of binder particle size. Int. J. Pharm., 139, 139-148. DOI: 10.1016/0378-5173(96)04548-6.

Smirani-Khayati N., Falk V., Bardin-Monnier N., Marchal-Heussler L., 2009. Binder liquid distribution during granulation process and its relationship to granule size distribution. Powder Technol., 195, 105-112. DOI: 10.1016/j.powtec.2009.05.020.

Vonk P., Ramaker J.S., Vromans H., Kossen N.W.F., 1997. Growth mechanisms of high-shear palletisation. Int. J. Pharm., 157, 93-102. DOI: 10.1016/S0378-5173(97)00232-9.

Waldie B., 1991. Growth mechanism and the dependence of granule size on drop size in fluidised bed granulation. Chem. Eng. Sci., 46, 2781-2785. DOI: :10.1016/0009-2509(91)85147-P.

Wauters P.A.L., Van de Water R., Litster J.D., Meesters G.M.H., Scarlett B., 2002. Growth and compaction behavior of copper concentrate granules in rotating drum. Powder Technol., 124, 230-237. DOI: 10.1016/S0032-5910(02)00029-3.

Wauters P.A.L., Jakobsen R.B., Litster J.D., Meesters G.M.H., Scarlett B., 2002b. Liquid distribution as a means to describing the granule growth mechanism. Powder Technol., 123, 166-177. DOI: 10.1016/S0032-5910(01)00446-6.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 101 4
PDF Downloads 72 54 3