Methanol as a High Purity Hydrogen Source for Fuel Cells: A Brief Review of Catalysts and Rate Expressions

Open access


Hydrogen is the fuel of the future, therefore many hydrogen production methods are developed. At present, fuel cells are of great interest due to their energy efficiency and environmental benefits. A brief review of effective formation methods of hydrogen was conducted. It seems that hydrogen from steam reforming of methanol process is the best fuel source to be applied in fuel cells. In this process Cu-based complex catalysts proved to be the best. In presented work kinetic equations from available literature and catalysts are reported. However, hydrogen produced even in the presence of the most selective catalysts in this process is not pure enough for fuel cells and should be purified from CO. Currently, catalysts for hydrogen production are not sufficiently active in oxidation of carbon monoxide. A simple and effective method to lower CO level and obtain clean H2 is the preferential oxidation of monoxide carbon (CO-PROX). Over new CO-PROX catalysts the level of carbon monoxide can be lowered to a sufficient level of 10 ppm.

Agrell J., Germani G., Järås S. G., Boutonnet M., 2003. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Appl. Catal. A-Gen., 242, 233-245. DOI: 10.1016/S0926-860X(02)00517-3.

Agrell J., Birgersson H., Boutonnet M., 2002. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation J. Power Sources, 106, 249-257. DOI: 10.1016/S0378-7753(01)01027-8.

Agrell J., Hasselbo K., Jansson K., Järås S.G., Boutonnet M., 2001. Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Appl. Catal. A-Gen., 211, 239-250. DOI: 10.1016/S0926-860X(00)00876-0.

Alejo L, Lago R, Peňa M. A., Fierro J.L.G., 1997. Partial oxidation of methanol to produce hydrogen over Cu-Znbased catalysts. Appl. Catal. A-Gen.,162, 281-297. DOI: 10.1016/S0926-860X(97)00112-9.

Amphlett J.C., Evans M.J., Mann R. F., Weir R.D., 1985. Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using girdler G66B catalyst. Can. J. Chem. Eng., 63, 605-611. DOI: 10.1002/cjce.5450630412.

Avgouropoulos G., Ioannides T., Papadopoulou C., Batista J., Hocevar S., Matralis H., 2002. A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal. Today, 75,157-167. DOI: 10.1016/S0920-5861(02)00058-5.

Barton J., Pour V., 1980. Kinetics of catalytic conversion of methanol at higher pressures. Collect. Czech. Chem. Commun., 45, 3402-3407.

Chang F.W., Yu H.Y., Roselin L.S. , Yang H.Ch., Ou T.Ch., 2006. Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides. Appl. Catal. A-Gen., 302, 157-167. DOI: 10.1016/j.apeata.2005.12.028.

Cheng-Chun C., Jhih-Wei W., Ching-Tu C., Biing-Jye L., Yin-Zu C., 2012. Effect of ZrO2 on steam reforming of methanol over CuO/ZnO/ZrO2/Al2O3 catalysts. Chem. Eng. J., 192, 350-356. DOI: 10.1016/j.cej.2012.03.063.

Cubeiro M.L., Fierro J.L. G., 1998. Selective production of hydrogen by partial oxidation of methanol over ZnOSupported palladium catalysts. J. Catal., 179, 150-162. DOI: 10.1006/jcat.1998.2184.

Di Benedetto A., Landi G., Lisi L., Russo G., 2013. Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst. Appl. Catal. B-Environ., 142-143, 169-177. DOI: 10.1016/j.apcatb.2013.05.001

Dodds P.E., Staffell I., Hawkes A.D., Li F., Grünewald P., McDowall W., Ekins P., 2015. Hydrogen and fuel cell technologies for heating: A review. Int. J. Hydrogen Energy, 40, 2065-2083. DOI: 10.1016/j.ijhydene.2014.11.059.

Dudfield C.D., Chen R., Adcock P.L., 2001. A carbon monoxide PROX reactor for PEM fuel cell automotive application. Int. J. Hydrogen Energ., 26, 763-775. DOI: 10.1016/S0360-3199(00)00131-2.

Geissler K., Newson E., Vogel F., Truong T.B., 2001. Hottinger P, Wokaun A. Autothermal methanol reforming for hydrogen production in fuel cell applications. Phys. Chem. Chem. Phys., 3, 289-293. DOI: 10.1039/b004881j.

Gu D., Jia C. J., Bongard H., Spliethoff B., Weidenthaler C., Schmidt W., Schüth F., 2014. Ordered mosorporous Cu-Ce-O catalysts for CO preferential oxidation in H2-rich gasees: Influance of copper content and pretreatment conditions. Appl. Catal. B- Envinron., 152-153, 11-18. DOI: 10.1016/j.apcatb.2014.01.011.

Hansen J.B., 1997. Handbook of Heterogeneous Catalysis, Ertl G., Knözinger H., Weitkamp J. (Eds.), VCH, Weinheim, Vol. 4, 1856.

Huang G., Liaw B.J., Jhang C.J., Chen Y.Z., 2009. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Appl. Catal. A-Gen., 358, 7-12. DOI: 10.1016/j.apcata.2009.01.031.

Hung-Ming Y. Min-Ke C., 2011. Steam reforming of methanol over copper-yttria catalyst supported on praseodymium-aluminum mixed oxides. Catal. Commun. 12, 1389-1395. DOI: 10.1016/j.catcom.2011.05.022.

Idem R.O., Bakhshi N.N., 1996. Characterization studies of calcined, promoted and non-promoted methanolsteam reforming catalysts. Can. J. Chem. Eng., 74, 288-300. DOI: 10.1002/cjce.5450740214.

Ilinich O.M., Liu Y., Waterman E.M., Farrauto R.J., 2013. Kinetics of methanol steam reforming with a Pd-Zn- Y/CeO2 catalyst under realistic operating conditions of a portable reformer in fuel cell applications. Ind. Eng. Chem. Res., 52, 638-644. DOI: 10.1021/ie301606w.

Jiang C.J., Trimm D.L., Wainwright M.S., Cant N.W., 1993. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Appl. Catal. A-Gen., 97, 145-158. DOI: 10.1016/0926-860X(93)80081-Z.

Jiang C.J., Trimm D.L., Wainwright M.S., Cant N.W., 1993. Kinetic study of steam reforming of methanol over copper-based catalysts. Appl. Catal. A-Gen., 93, 245-255. DOI: 10.1016/0926-860X(93)85197-W.

Kim Y.H., Park E.D., Lee H.Ch., Lee D., Lee D.K., 2009. Preferential CO oxidation over supported noble metal catalysts. Catal. Today, 146, 253259. DOI: 10.1016/j.cattod.2009.01.045.

Korotkikh O., Farrauto R., 2000. Selective catalytic oxidation of CO in H-2: Fuel cell applications. Catal. Today, 62, 249-254. DOI: 10.1016/S0920-5861(00)00426-0.

Kulawska M., 2008. Termodynamika, zagadnienia katalityczne i kinetyka w procesie syntezy wyższych alkoholi alifatycznych. Prace Naukowe IICh PAN.

Kung H.H., Kung M.C., Costello C.K., 2003. Supported Au catalysts for low temperature CO oxidation. J. Catal., 216, 425-432. DOI: 10.1016/S0021-9517(02)00111-2.

Lachowska M., 2010. Steam reforming of methanol over Cu/Zn/Zr/Ga catalyst - effect of the reduction conditions on the catalytic performance. Reac. Kinet. Mech. Cat., 101, 85-91. DOI: 10.1007/s11144-010-0213-z.

Lachowska M., 2004. Reforming metanolu parą wodną na katalizatorze miedziowo-cynkowo-cyrkonowym modyfikowanym Ga, Mn oraz Mg. Inż. Chem. Proc., 25, 1243-1247.

Lee J.K., Ko J.B., Kim D.H., 2004. Methanol steam reforming Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl. Catal. A-Gen., 278, 25-35. DOI: 10.1016/j.apcata.2004.09.022.

Lindström B., Pettersson L.J., Govind M.P., 2002. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ- alumina for methanol reforming for fuel cell vehicles. Appl. Catal. A-Gen., 234, 111-125. DOI: 10.1016/S0926-860X(02)00202-8.

Liu Q., Wang L.C., Chen M., Liu Y.M., Cao Y., He H.Y., Fan K.N., 2008. Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming. Catal. Lett., 121, 144-150. DOI: 10.1007/s10562-007-9311-6.

Liu Y., Fu Q., Stephanopoulos M. F., 2004. Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal. Today, 93-95, 241-246. DOI: 10.1016/j.cattod.2004.06.049.

Liu Y., Hayakawa T., Tsunoda T., Suzuki K., Hamakawa S., Murata K., Shiozaki R., Ishii Kumagai T.M., 2003. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts. Top. Catal., 22, 205-213. DOI: 10.1023/A:1023519802373.

Liu Y., Hayakawa T., Tsunoda T., Suzuki K., Hamakawa S., Murata K., Shiozaki R., Ishii T., Kumagai M., 2003. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts. Top. Catal., 22, 205-213. DOI: 10.1023/A:1023519802373.

Liu Y., Liu B., Liu Y., Wang Q., Hu W., Jing P., Liu L., Yu S., Zhang J. , 2013. Improvement of catalytic performance of preferential oxidation of CO in H2-richgases on three-dimensionally ordered macro-and mesoporous Pt-Au/CeO2 catalysts. Appl. Catal.- B Environ., 142-143, 615-625. DOI: 10.1016/j.apcatb.2013.06.002.

Lopez P., Mondragon-Galicia G., Espinosa-Pesqueita M.E., 2012. Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies. Int. J. Hydrogen Energ., 37, 9018-9027. DOI: 10.1016/j.ijhydene.2012.02.105.

Madej-Lachowska M., 2012. Reforming metanolu parą wodną - Termodynamika, kataliza i kinetyka procesu. Agencja Wydawnicza ARGI s.c., Wrocław.

Maeda N., Matsushima T., Uchida H., Yamashita H., Watanabe M., 2008. Performance of Pt-Fe/mordenite monolithic catalysts for preferential oxidation of carbon monoxide in a refor-mate gas for PEFCs. Appl. Catal. A-Gen., 341, 93-97. DOI: 10.1016/j.apcata.2008.02.022.

Margitfalvi J.L., Hegedús M., Szegedi A., Sajó I., 2004. Modification of Au/MgO catalysts used in low temperature CO oxidation with Mn and Fe. Appl. Catal. A-Gen., 272, 87-97. DOI: 10.1016/j.apcata.2004.05.035.

Mastalir A., Frank B., Szizybalski A., Soerijanto H., Deshpande A., Niederbrger M., Schomäcker R., Schlögl R., Resseler T., 2005. Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study. Appl. Catal. AGen., 230, 464-475. DOI: 10.1016/j.jcat.2004.12.020.

Mastalir Á., Patzkó Á., Frank B., Schomäcker R., Ressler T., Schlögl R., 2007. Steam reforming of methanol over Cu/ZnO/Al2O3 modified with hydrotalcites. Catal. Commun., 8, 1684-1690. DOI: 10.1016/j.catcom.2007.01.031.

Matsumura Y., 2013. Development of durable copper catalyst for hydrogen production by high temeperature methanol steam refo.rming. Int. J. Hydrogen Energ., 38, 13950-13960. DOI: 10.1016/j.ijhydene.2013.08.066

Matsumura Y., 2014. Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming. J. Power Sources, 272, 961-969. DOI: 10.1016/j.jpowsour.2014.09.047.

Matsumura Y., 2013. Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support. J. Power Sources, 238, 109-116. DOI: 10.1016/j.jpowsour.2013.03.074

Momirlan M., Veziroglu, T.N, 2005. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energ., 30, 795-802. DOI: 10.1016/j.ijhydene.2004.10.011.

Monte M., Gamarra D., López Cámara A., Rasmussen S. B., Gyorffy N., Schay Z., Martínez-Arias A., Conesa J. C., 2014. Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Performance as a function of copper coverage and exposed face present in the CeO2 support. Catal. Today, 229, 104-113. DOI: 10.1016/j.cattod.2013.10.078.

Navarro R.M., Peňa M.A., Fierro J.G., 2002. Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer. J. Catal., 212, 112-118. DOI: 10.1006/jcat.2002.3764.

Papavasiliou J., Avgouropoulos G., Ioannides T., 2007. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts. J. Catal., 251, 7-20. DOI: 10.1016/j.jcat.2007.07.025.

Papavasiliou J., Avgouropoulos G., Ioannides T., 2009. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl. Catal. B-Environ., 88, 490-496. DOI: 10.1016/j.apcatb.2008.10.018.

Park B., Kwon S., 2015. Compact design of oxidative steam reforming of methanol assisted by blending hydrogen peroxide. Int. J. Hydrogen Energ., 40, 12697-12704. DOI: 10.1016/j.ijhydene.2015.07.084

Patel S., Pant K.K., 2006. Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol. J. Porous Mat., 13, 373-378. DOI: 10.1007/s10934-006-8033-2.

Peppley B.A. Amphlett J.C., Kearns L.M., Mann R.F., 1999. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2: A comprehensive kinetic model. Appl. Catal. A-Gen., 179, 31-49. DOI: 10.1016/S0926-860X(98)00299-3.

Pojanavaraphan Ch., Luengnaruemitchai A., Gulari E., 2012. Hydrogen production by oxidative reforming of methanol over Au/CeO2 catalysts. Chem. Eng. J., 192, 105-103. DOI: 10.1016/j.cej.2012.03.083.

Pojanavaraphan Ch., Nakaranuwattana W., Luengnaruemitchai A., Gulari E., 2014. Effect of support composition and metal loading on Au/Ce1-xZrxO2 catalysts for the oxidative steam reforming of methanol. Chem. Eng. J., 240, 99-108. DOI: 10.1016/j.cej.2013.11.062.

Purnama H., Girgsdies F., Ressler T., Schattka J. H., Caruso R. A., Schomäcker R., Schlögl R., 2004. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol. Catal. Lett., 94, 61-68. DOI: 10.1023/ B:CATL.0000019332.80287.6b.

Purnama H., Ressler T., Jentoft R.E., Soerijanto H., Schlogl R., Schomacker R., 2004. CO formation/ selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl. Catal. A-Gen., 259, 83-94. DOI: 10.1016/j.apcata.2003.09.013.

Rameshan Ch., Lorenz H., Mayr L., Penner S., Zemlyanow D., Arrigo R., Haevecker M., Blume R., Knop- Gericke A., Schlögl R., 2012. CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy. J. Catal., 295, 185-194. DOI: 10.1016/j.jcat.2012.08.008.

Sá S., Silva H., Brandão L., Sousa J.M., Mendes A., 2010. Catalysts for methanol steam reforming - A review. Appl .Catal. B- Environ., 99, 43-57. DOI: 10.1016/ j.apcatb.2010.06.015.

Samms S.R., Savinell R.F., 2002. Kinetics of methanol-steam reformation in an internal reforming fuel cell. J. Power Sources, 112, 13-29. DOI: 10.1016/S0378-7753(02)00089-7.

Santacesaria E., Carrà E., 1978. Cinetica dello steam reforming del metanolo. La Rivista dei Combustibili, XXXII: 227-232.

Santacesaria E., Carrà S., 1983 Kinetics of catalytic steam reforming of methanol in a CSTR reactor. Appl. Catal., 5, 345-358. DOI: 10.1016/0166-9834(83)80162-6.

Shishido T., Yamamoto Y., Morioka H., Takaki K., Takehira K., 2004. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol. Appl. Catal. A: Gen., 263, 249-253. DOI: 10.1016/j.apcata.2003.12.018.

Skrzypek J., Słoczyński J., Ledakowicz S., 1994. Methanol synthesis. PWN, Warszawa.

Snytnikov P.V., Badmaev S.D., Volkova G.G., Potemkin D.I., Zyryanova M.M., Belyaev V.D., Sobyanin V.A., 2012. Catalysts for hydrogen production in a multifuel processor by methanol, dimethyl ether and bioetanol steam reforming for fuel cell applications. Int. J. Hydrogen Energ., 37, 16388 - 16369. DOI: 10.1016/j.ijhydene.2012.02.116.

Spivey J.J., 2005. Catalysis in the development of clean energy technologies. Catal. Today, 100, 171-180. DOI: 10.1016/j.cattod.2004.12.011.

Squadrito G., Andaloro L., Rerraro M. Antonucci V., 2014. In: Basil A., Julianelli A. (Eds.), Hydrogen fuel cell technology. Elsevier, New York, 451-496. DOI: 10.1533/9780857097736.3.451.

Takahashi K., Takezawa N., Kobayashi H., 1982. The mechanism of steam reforming of methanol over a coppersilica catalyst. Appl. Catal., 2, 363-366. DOI: 10.1016/0166-9834(82)80154-1.

Takezawa N., Iwasa N., 1997. Steam reforming and dehydrogenation of methanol: Difference in the catalytic function of copper and group VIII metals. Catal. Today, 36, 45-56. DOI: 10.1016/S0920-5861(96)00195-2.

Tanaka H., Ito S., Kameoka S., Tomishige K., Kunimori K., 2003. Catalytic performance of K-promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen. Appl. Catal. A: Gen., 250, 255-263. DOI: 10.1016/S0926-860X(03)00320-X.

Tang C., Sun J., Yao X., Cao Y., Liu L., Ge C., Gao F., Dong L., 2014. Efficient fabrication of active CuOCeO2/ SBA-15 catalysts for preferential oxidation of CO by solid state impregnation. Appl. Catal. B- Environ., 146, 201-212. DOI: 10.1016/j.apcatb.2013.05.060.

Tesser R., Di Serio M., Santacesaria E., 2009. Methanol steam reforming: A comparison of different kinetics in the simulation of a packed bed reactor. Chem. Eng. J., 154, 69-75. DOI: 10.1016/j.cej.2009.06.007.

Urasaki K., Tanimoto N., Hayashi T., Sekine Y., Kikuchi E., Matsukata M., 2005. Hydrogen production via steam-iron reaction using iron oxide modified with very small amounts of palladium and zirconia. Appl. Catal. A- Gen., 288, 143-148. DOI: 10.1016/j.apcata.2005.04.023.

Wang H., Zhu H., Qin Z., Wang G., Liang F., Wang J., 2008. Preferential oxidation of CO in H2 rich stream over Au/CeO2-Co3O4 catalysts. Catal. Commun., 9, 1487-1492. DOI: 10.1016/j.catcom.2007.12.017.

Wang L.C., Liu Y.M., Chen M., Cao Y., He H.Y., Wu G.S., Dai L.W., Fan K. N., 2007. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis. J. Catal., 246, 193-204. DOI: 10.1016/j.jcat.2006.12.006.

Wu G.-S., Mao D.-S., Lu G.-Z., Cao Y., Fan K.-N., 2009. The role of the promoters in Cu based catalysts for methanol steam reforming. Catal. Lett., 130, 177-184. DOI: 10.1007/s10562-009-9847-8.

Yao C. Z., Wang L. C., Liu Y. M., Wu G. S., Cao Y., Dai W. L., He H.Y., Fan K.N., 2006. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl. Catal. A-Gen., 297, 151-158. DOI: 10.1016/j.apcata.2005.09.002.

Yong S. T., Ooi C.W., Chai S.P., Wu X.S.,2013. Review of methanol steam reforming - Cu - based catalysts, surface reaction mechanisms, and reaction schemes. Int. J. Hydrogen Energ., 38, 9541-9552. DOI: 10.1016/j.ijhydene.2013.03.023.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 252 23
PDF Downloads 95 95 10