Numerical modelling of a stoker furnace operated under indirect co-firing of biomass

Open access

Abstract

The subject of the CFD analysis presented in this paper is the process of biomass indirect co-firing carried out in a system composed of a stoker-fired furnace coupled with a gasification reactor. The installation is characterised by its compact structure, which makes it possible to minimise heat losses to the environment and enhance the physical enthalpy of the oxidising agent – flue gases – having a favourable chemical composition with oxygen and water vapour. The test results provided tools for modelling of biomass thermal processing using a non-standard oxidiser in the form of flue gases. The obtained models were used to optimise the indirect co-combustion process to reduce emissions. An overall effect of co-combustion of gas from biomass gasification in the stoker furnace is the substantial reduction in NO emissions by about 22%.

De Souza-Santos M.L., 1989. Comprehensive modelling and simulation of fluidized bed boilers and gasifiers. Fuel, 68, 1507-1521. DOI: 10.1016/0016-2361(89)90288-3.

Dryer F.L., Glassman I., 1973. High-temperature oxidation of CO and CH4. Symposium (International) on Combustion, 14, 987-1003.

Fluent 6.3 User’s Guide. Fluent Inc, 2006.

Hernik B., 2014. Numerical calculations of WR-40 boiler based on its zero-dimensional model. Chem. Process Eng., 35, 173-180. DOI: 10.2478/cpe-2014-0013.

Kordylewski W. (Ed.), 2008. Spalanie i paliwa. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.

Litka R., Kalisz S., 2012. Thermochemical analysis of a flue gas-driven biomass gasification. Chem. Process Eng., 33, 487-503. DOI: 10.2478/v10176-012-0041-y.

Mehrabian R., Zahirovic S., Scharler R., Obernberger I., Kleditzsch S., Wirtz S., Scherer V., Lu H., Baxter L.L., 2012. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process. Technol., 95, 96-108. DOI: 10.1016/j.fuproc.2011.11.021.

Mikulski C., 1954. Kotły parowe (wytwornice pary). Państwowe Wydawnictwo Naukowe, Warszawa.

Miles T., Baxter L., Bryers R., Jenkins B., Oden L., 1995. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature. National Renewable Energy Laboratory. Available at: http://www.nrel.gov/docs/legosti/fy96/8142v1.pdf.

Miltner M., Makaruk A., Harasek M., Friedl A., 2006. CFD-Modelling for the combustion of solid balled biomass. Fifth International Conference on CFD in the Process Industries, CSIRO. Melbourne, Australia.

Ostrowski Z., Zabłocki K., Zagórski J., Zmysłowski A., 1956. Kotły parowe, Vol. I. Państwowe Wydawnictwa Techniczne, Warszawa.

Patent PL 212497. A method and a biomass pyrolysis installation before the co-combustion process, especially in power boilers. Patent Office of the Republic of Poland (UPRP).

Pronobis M., Wojnar W., 2013. The impact of biomass co-combustion on the erosion of boiler convection surfaces. Energy Convers. Manage., 74, 462-470. DOI: 10.1016/j.enconman.2013.06.059.

Smoot L.D., Smith P.J., 1985. Coal combustion and gasification. Plenum Press, New York.

Türschmid R., 1988. Kotłownie i elektrociepłownie przemysłowe. Obliczenia z zakresu oszczędnej eksploatacji i modernizacji. Arkady, Warszawa.

Patent PL 212557. A method and a biomass carbonization and gasification installation before the co-combustion process, especially in power boilers. Patent Office of the Republic of Poland (UPRP).

Patent PL 214645. A method and a biomass gasification installation before the co-combustion process, especially in power boilers. Patent Office of the Republic of Poland (UPRP).

Zelena S., 1963. Obsługa kotłów parowych. WNT Warszawa.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 118 2
PDF Downloads 87 72 5