Application of genetic algorithms to determine heavy metal ions sorption dynamics on clinoptilolite bed

Open access

Application of genetic algorithms to determine heavy metal ions sorption dynamics on clinoptilolite bed

In the last decade a growing interest was observed in low-cost adsorbents for heavy metal ions. Clinoptilolite is a mineral sorbent extracted in Poland that is used to remove heavy metal ions from diluted solutions. The experiments in this study were carried out in a laboratory column for multicomponent water solutions of heavy metal ions, i.e. Cu(II), Zn(II) and Ni(II). A mathematical model to calculate the metals' concentration of water solution at the column outlet and the concentration of adsorbed substances in the adsorbent was proposed. It enables determination of breakthrough curves for different process conditions and column dimensions. The model of process dynamics in the column took into account the specificity of sorption described by the Elovich equation (for chemical sorption and ion exchange). Identification of the column dynamics consisted in finding model coefficients β, KE and Deff and comparing the calculated values with experimental data. Searching for coefficients which identify the column operation can involve the use of optimisation methods to find the area of feasible solutions in order to obtain a global extremum. For that purpose our own procedure of genetic algorithm is applied in the study.

Babu B.V, Gupta S., 2005. Modeling and simulation of fixed bed adsorption column: Effect of velocity variation. J. Eng. Technol., 1, 60-66. DOI:10.1016/30923-4748(05)00044-05.

Chang M. Y., Juang R. S., 2005. Equilibrium and kinetic studies on the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers. Colloids Surf. A: Physicochem. Eng. Aspects, 269, 35-46. DOI: 10.1016/j.colsurfa.2005.06.064.

Chen J. P., Yoon J.-T., Yiacoumi S., 2003. Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns. Carbon, 41, 1635-1644. DOI: 10.1016/S0008-6223(03)00193-3.

Chojnacka K., Chojnacki A., Hoffmann J., Górecki H., 2004. The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Minerals Eng., 17, 7 - 8, 933-937. DOI:10.1016/j.mineng.2004.03.002.

Davis L., 1991. Handbook of genetic algorithms. Van Nostrand Reinhold, New York.

Duffus J. H., 2002, "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure Appl. Chem., 74, 793-807. DOI: 10.1351/pac200274050809.

Erdem E., Karapinar N., Donat R., 2004. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci., 280, 309-314. DOI: 10.1016/j.jcis.2004.08.028.

Fogel D. B., 1994. An introduction to simulated evolutionary optimization. IEEE Trans. Neural Networks, (5), 1, 3-14. DOI: 10.1109/72.265956.

Gök Ö., Özcan A. S., Özcan A., 2008. Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions. Desalination, 220, 96-107. DOI: 10.1016/j.desal.2007.01.025.

Gomonaj V. I., Golub N. P., Szekeresh K. Y. Leboda R. Skubiszewska-Zięba J., 1998. Research on the usefulness transcarpathian clinoptilolite for the sorption of Hg(II), Cr(II) and Ni(II) from aqueous solutions. Ochrona Środowiska, 4, 71, 3-6 (in Polish).

Gupta S., Babu B. V., 2009. Modeling, simulation, and experimental validation of continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent. Bioresource Technol., 100, 5633-5640. DOI: 10.1016/j.biotech.2009.06.025.

Holland J. H., 1968. Hierarchical descriptions of universal spaces and adaptive systems. Technical Report ORA Projects 01252 & 08226. Ann Arbor, Univ. of Michigan.

Holland J. H., 1987. Genetic algorithms and classifier systems, foundation and future directions, II Int. Conf. on Genetic Algorithms, Cambridge, MA, USA, 82-89.

Kaminski W., Strumiłło P., Tomczak E., 2005. Application of artificial intelligence systems to solve some environmental problems, Wydawnictwo PAN, Oddział w Łodzi, Komisja Ochrony Środowiska, Łódź (in Polish).

Kaminski W., Tomczak E., 1998. Application of genetic algorithms in chemical and process engineering. Inż. Chem. Proc., 281-295 (in Polish).

Kamio E., Matsumoto M., Kondo K., 2002. Uptakes of rare metal ionic species by a column packed with microcapsules containing an extractant. Sep. Purif. Technol., 29, 121-130. DOI:10.1016/51383-5866(02)00068-0.

Kosobucki P., Kruk M., Buszewski B., 2008. Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresource Technol., 99, 5972-5976. DOI: 10.1016/j.biortech.2007.10.023.

Kurowski Z., 1978. Application of national clinoptilolites for removal of ammonia nitrogen in water renewal. PhD Thesis, Faculty of Environmental Engineering, Wrocław University of Technology (in Polish).

Linnik, P. N., 1998. Heavy metal speciation as important characteristic of water bodies ecotoxicological state. Fourth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe., Warsaw, Symp. Proc., 1240-1246.

Mercer B. W., Ames L. L., 1976, Ammonia removal from wastewater. Natural zeolites - occurancse, properties use. Pergamon Press, 458-462.

Molga E., 2008. Modeling of reactive adsorption processes, Chem. Process Eng., 29, 683-699.

Pérez-Marín A. B., Zapata V. M., Ortuño J. F., Aguilar M., Sáez J., Lloréns M., 2007. Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazardous Materials, 139, 122-131. DOI: 10.1016/j.hazmat.2006.06.008.

Petrus R., Warchol J., 2005. Heavy metal removal by clinoptilolite. An equilibrium study in multi-component system. Water Res., 39, 819-830. DOI: 10.1016/j.watres.2004.12.003.

Rutkowska D., Piliński M., Rutkowski L., 1997. Neural networks, genetic algorithms and fuzzy systems. PWN, Warszawa-Łódź (in Polish).

Sağ Y., Aktay Y., 2001. Application of equilibrium and mass transfer models to dynamic removal of Cr (VI) ions by chitin in packed column reactor. Process Biochem., 36, 1187-1197. DOI: 10.1016/S0032-9592(01)00150-9.

Sprynskyy M., Lebedynets M., Zbytniewski R., Namieśnik J., Buszewski B., 2005. Ammonium removal from aqueous solution by natural zeolite. Transcarpathian modernite: kinetics, equilibrium and column tests. Sep. Purif. Technol., 46, 155-160. DOI: 10.1016/j.seppur.2005.05.004.

Suguna M., Kumar N. S., Subbaiah M., Krishnaiaha V., 2010. Removal of divalent manganese from aqueous solution using Tamarindus indica ferut nut shell. J. Chem. Pharm. Res., 2, 1, 7-20.

Tarasevich Yu.I., Krysenko D. A. Polyakow V. E., 2006. Equilibria and heats of ion exchange in the system of mordenite- alkali and alkaline earth cations. Theor. Experim. Chem., 42, 5, 320-326. DOI: 10.1007/S11237-006-0060-1.

Tomczak E., 2011. Application of ANN and EA for description of metal ions on chitosan foamed structure - Equilibrium and dynamics of packed column. Comp. Chem. Eng., 35, 226-235. DOI: 10.1016/j.compchemeng.2010.05.012.

Tomczak E., 2011a. Contamination removal from water solution in packed column - problems of adsorption dynamics modelling. Scientific Bulletin of Łódź Technical University, 1102, 412, 172.

Tomczak E., Kaminski W., 2008. Evolutionary algorithm reinforce with linear projection and clustering. Proc. XIX Intern. Confer. On System Eng., Las Vegas, 427-430. DOI: 10.1109/ICSEng.2008.12.

Tomczak E., Sulikowski R., 2010. Description of the equilibrium and sorption kinetics of heavy metals on clinoptilolite, Inż. Aparat. Chem., 1, 113-15(in Polish).

Whitly D., 2001. An overview of evolutionary algorithms: practical issues and common pitfalls. Inform. Software Technol., 43, 817-831. DOI: 10.1016/S0950-5849(01)00188-4.

Zamzow M. J., Echibaum B. R., Sandgren K. R. Shanks D. E., 1990. Removal of heavy metals and other cations from waste water using zeolites. Sep. Sci. Technol., 25, 13-15, 1555-1569. DOI: 10.1080/01496399008050409.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 184 13
PDF Downloads 81 72 11