Maize transpiration in response to meteorological conditions

Open access


Differences in transpiration of maize (Zea mays L.) plants in four soil moisture regimes were quantified in a pot experiment. The transpiration was measured by the “Stem Heat Balance” method. The dependence of transpiration on air temperature, air humidity, global solar radiation, soil moisture, wind speed and leaf surface temperature were quantified. Significant relationships among transpiration, global radiation and air temperature (in the first vegetation period in the drought non-stressed variant, r = 0.881**, r = 0.934**) were found. Conclusive dependence of transpiration on leaf temperature (r = 0.820**) and wind speed (r = 0.710**) was found. Transpiration was significantly influenced by soil moisture (r = 0.395**, r = 0.528**) under moderate and severe drought stress. The dependence of transpiration on meteorological factors decreased with increasing deficiency of water. Correlation between transpiration and plant dry matter weight (r = 0.997**), plant height (r = 0.973**) and weight of corn cob (r = 0.987**) was found. The results of instrumental measuring of field crops transpiration under diverse moisture conditions at a concurrent monitoring of the meteorological elements spectra are rather unique. These results will be utilized in the effort to make calculations of the evapotranspiration in computing models more accurate.

Bethenod O., Katerji N., Goujet R., Bertolini J. M., Rana G., 2000: Determination and validation of corn crop transpiration by sap flow measurement under field conditions. Theoretical and Applied Climatology, 67, 153-160.

Cakir R., 2004: Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89, 1-16.

Doorenbos J., Kassam A. K., 1979: Yield response to water. Irrigation and Drainage Paper. FAO, United Nations, Rome, 33, 176 p.

Du S., Wang Y-L., Kume T., Zhang J-G., Otsuki K., Yamanaka N., Liu G-B., 2011: Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 151, 1-10.

Escalona J., Flexas J., Medrano H., 2002: Drought effects on water flow, photosynthesis and growth of potted grapevines. Vitis, 41, 57-62.

Farooq M., Bramley H., Palta J. A., Siddique K. H. M., 2011: Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491-507.

Gao Y., Duan A. W., Qiu X. Q., Zhang J. P., Sun J. S., Wang H. Z., 2010: Plant transpiration in a maize/soybean intercropping system measured with heat balance method. Chinese Journal of Applied Ecology, 21, 1283-1288.

Gavloski J. E., Ellis C. R., Whitfield G. H, 1992: Effect of restricted watering on sap flow and growth in corn (Zea mays L.). Canadian Journal of Plant Science, 72, 361-368.

Gerdes G., Allison B. E., Pereira L. S., 1994: Overestimation of soybean crop transpiration by sap flow measurements under field conditions in Central Portugal. Irrigation Science, 14, 135-139.

Granier A., 1985: Une nouvelle m´ethode pour la mesure dy flux de s`eve brute dans le trons des arbres. Annales Scientifique Forestiere, 22, 193-200 (in French).

Irmak S., Mutiibwa D., 2010: On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables. Water Resources Research, 46, doi:10.1029/2009WR008484.

Ishida T., Campbell G. S., Calissendorff C., 1991: Improved heat balance method for determining sap flow rate. Agricultural and Forest Meteorology, 56, 35-48.

Jamieson P. D., Francis G. S., Wilson D. R., Martin R. J., 1995: Effects of water deficits on evapotranspiration from barley. Agricultural and Forest Meteorology, 76, 41-58.

Kjelgaard J. F., Stockle C. O., Black R. A., Campbell G. S., 1997: Measuring sap flow with the heat balance approach using constant and variable heat inputs. Agricultural and Forest Meteorology, 85, 239-250.

Kucera J., ˇCerm´ak J., Penka M., 1977: Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum, 19, 413-420.

Li H., Liu Y., Cai J., Mao X., 2011: Change of sap flow rate and stem diameter microvariation of summer maize and influent factors. Transactions of the Chinese Society of Agricultural Engineering, 27, 187-191.

Lindroth A., Cermak J., Kuˇcera J., Cienciala E., Eckersten H., 1995: Sap flow by heat balance method applied to small size Salix-trees in a short-rotation forest. Biomass and Bioenergy, 18, 7-15.

Matejka F., Hurtalov´a T., Roˇznovsk´y J., Chalupn´ıkov´a B., 2005: Effect of soil moisture on evapotranspiration of a maize stand during one growing season. Contrib. Geophys. Geod., 35, 3, 219-228.

Meier U., 1997: BBCH-Monograph. Growth stages of plants - Entwicklungsstadien von Pflanzen - Estadios de las plantas - D´eveloppement des Plantes. Blackwell Wissenschaftsverlag, Berlin und Wien, 622 p.

Naithani K. J., Ewers B. E., Pendall E., 2012: Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. Journal of Hydrology, 464-465, 176-185.

Novak V., Hurtalova T., Matejka F., 2005: Predicting the effects of soil water content and soil water potential on transpiration of maize. Agricultural Water Management, 76, 211-223.

Oguntunde P. G., 2005: Whole-plant water use and canopy conductance of cassava under limited available soil water and varying evaporative demand. Plant and Soil, 278, 371-383.

Pivec J., Brant V., Beˇcka D., 2009: The influence of weather conditions on the sap flow of Brassica napus L. during the fructification and maturation stages. Ekol´ogia, 28, 43-51.

She D., Xia Y., Shao M., Peng S., Yu S., 2013: Transpiration and canopy conductance of Caragana korshinskii trees in response to soil moisture in sand land of China. Agroforestry Systems, 87, 667-678.

Smith D. M., Allen S. J., 1996: Measurement of sap flow in plant stems. Journal of Experimental Botany, 47, 1833-1844. ˇSantr˚uˇcek J., 1998: Vodn´ı reˇzim rostlin. In: Proch´azka S., et al.: Fyziologie rostlin. Academia, Praha, 52-88 (in Czech).

Wu Y. Z., Huang M. B, Warrington D. N., 2011a: Responses of different physiological indices for maize (Zea mays) to soil water availability. Pedosphere, 21, 639-649.

Wu Y. Z., Huang M. B., Warrington D. N., 2011b: Growth and transpiration of maize and winter wheat in response to water deficits in pots and plots. Environmental and Experimental Botany, 71, 65-71.

Yang Z., Sinclair T. R., Zhu M., Messina C. D., Cooper M., Hammer G. L., 2012: Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany, 78, 157-162.

Zeppel M. J. B., Macinnis-Ng C. M. O., Yunusa I. A. M., Whitley R. J., Eamus D., 2008: Long term trends of stand transpiration in a remnant forest during wet and dry years. Journal of Hydrology, 349, 200-213.

Zhao F., Wang Q., Wang J., Wang J., Ouyang Z., Yu G., 2011: Photosynthesis-transpiration coupling mechanism of wheat and maize during daily variation. Acta Ecologica Sinica, 31, 7526-7532.

Zinselmeier C., Sun Y., Helentjaris T., Beatty M., Yang S., Smith H., Habben J., 2002: The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crops Research, 75, 111-121.

Zivcak M., 2010: ´Uˇcinok vysok´ych teplot, prejavy aklimaˇcn´ych mechanizmov a ich detekci na ´urovni fotosyntetick´eho apar´atu byl´ın a drev´ın. In: Souˇcasn´e moˇznosti fyziologie a zemˇedˇelsk´eho v´yzkumu pˇrispˇet k produkci rostlin (vybran´e kapitoly), V´yzkumn´y ´ustav rostlinn´e v´yroby, v.v.i., Praha, 155-173 (in Czech).

Contributions to Geophysics and Geodesy

The Journal of Geophysical Institute of Slovak Academy of Sciences

Journal Information

CiteScore 2017: 0.36

SCImago Journal Rank (SJR) 2017: 0.199
Source Normalized Impact per Paper (SNIP) 2017: 0.216


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 151 6
PDF Downloads 69 69 3