The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concern- ing zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.

[1] K. Avetisyan: On representation of some classes of subharmonic functions in the unit disk and in the half plane. Izv. Nats. Acad. Armenii, Matematika. 29 (1) (1994) 1-13. (In Russian)

[2] V.A. Bednazh, O.V. Karbanovich, F.A. Shamoyan: On some weighted spaces of meromorphic functions with restrictions of the Nevanlinna characteristic. Modern problems of complex and harmonic analysis: Abstracts of conference, Bryansk St. Univ. (2014) p. 56. (In Russian)

[3] E. Beller: Zeros of Ap functions and related classes of analytic functions. Israel Jour. Math. 22 (1975) 68-80. 1

[4] E. Beller: Factorization for non-Nevanlinna classes of analytic functions. Israel Jour. Math. 27 (3-4) (1977) 320-330.

[5] I.E. Chyzhykov: Growth of analytic functions in the unit disc and complete measure in the sense of Grishin. Mat. Stud. 29 (1) (2008) 35-44.

[6] I.E. Chyzhykov: Zero distribution and factorization of analytic functions of slow growth in the unit disc. Proc. Amer. Math. Soc. 141 (2013) 1297-1311.

[7] I.E. Chyzhykov: Growth of p-th means of analytic and subharmonic function in the unit disk and angular distribution of zeros. arXiv:1509.02141 (2015) 1-19.

[8] I.E. Chyzhykov, S. Skaski: Growth, zero distribution and factorization of analytic functions of moderate growth in the unit disc, Blashke products and their applications. Fields Inst. Comm. 65 (2013) 159-173.

[9] M.M. Djrbashian: On a problem of representation of analytic functions. Soobsch. Inst. Mat. i Meh. AN Arm. SSR 2 (1948) 3-40. (In Russian)

[10] M.M. Djrbashian: On parametric representation of some classes of meromorphic functions in the unit disk. Dokl. AN SSSR. 157 (1964) 1024-1027. (in Russian)

[11] M.M. Djrbashian: Integral transforms and representation in complex plane. Nauka, GITTL. Moscow (1966). (In Russian)

[12] M.M. Djrbashian: The factorization theory of functions, meromorphic in the unit disk. Mat. Sb. 79 (121) (1969) 517-615. (In Russian)

[13] A.M. Djrbashian, G.V. Mikaelyan: On boundary properties of Blaschke type products. Izv. Nats. AN Armenii, Matematika 26 (1991) 435-442. (In Russian)

[14] A.A. Goldberg, I.V. Ostrovskii: On distribution of values of meromorphic functions. Nauka. Moscow (1970). (In Russian)

[15] G. Hardy, J. Littlwood, G. Polia: Inequalities. GITTL, Moscow (1948). (In Russian)

[16] W. Hayman: Meromorphic functions. Mir, Moscow (1966). (In Russian)

[17] A. Heipler: The zeros of functions in Nevanlinna's area class. Israel Jour. Math. 34 (1-2) (1979) 1-11.

[18] S.Ya. Kasyaniuk: On functions from A and H class in case of circular rings. Mat. Sb. 42 (84) (1957) 301-326. (In Russian)

[19] V.I. Krylov: On functions regular in half plane. Mat. Sb. 6 (48) (1939) 95-138. (In Russian)

[20] I.S. Kursina: Factorization and parametric representation of weighted classes of analytic functions: the thesis abstract. Voronezh State Univ., Voronezh 4 (2000) 43-54. (In Russian)

[21] G.U. Matevosyan: On an factorization of functions meromorphic in multiconnected domains and applications. Izv. AN Armenii, Matematika 9 (1974) 387-408. (In Russian)

[22] G.U. Matevosyan: An analogue of N(w) class in case of circular rings. Izv. AN Armenii, Matematika. 21 (2) (1977) 173-182. (In Russian)

[23] R. Nevanlinna: Single-Valued Analytic Functions. Gostehizdat, Moscow (1941). (In Russian)

[24] O.V. Ohlupina: Description of a class of subharmonic functions in the unit disk, whose Nevanlinna's characteristic is in wheigted Lp-spaces. Vestnik Samarskogo Univ. 9/1 (59) (2008) 108-120. (In Russian)

[25] O.V. Ohlupina: Parametric representation of some classes of subharmonic functions in a half plane with characteristic from weighted Lp-spaces. Vestnik Bryanskogo Univ., Bryansk State Univ. 4 (2010) 24-36. (In Russian)

[26] O.V. Ohlupina: Green type potentials and integral representation of wheigted classes of subharmonic functions: the PhD thesis abstract. (In Russian) (2012)

[27] J. Ortega-Cerda, J. Bruna: On Lp-solutions of the Laplace equation and zeros of holomorphic functions. Annali della Scuola Normale de Pisa 24 (1997) 571-591.

[28] O.V. Prihodko: On root sets of some area Nevanlinna type spaces in angular domains on a complex plane. Vestnik Bryanskogo Univ. Bryansk State Univ., Bryansk 4 (2010) 36-40. (In Russian)

[29] I.I. Privalov: Boundary properties of single-valued analytic functions. Moscow St. Univ., Moscow (1941). (In Russian)

[30] I.I. Privalov: Boundary properties of analytic functions. Gostekhizdat, Moscow and Leningrad (1950). (In Russian)

[31] I.I. Privalov, P.I. Kuznetsov: Boundary properties and various classes of harmonic and subharmonic functions, defined in arbitrary domains. Mat. Sbornik 6 (48) (1939) 345-376. (In Russian)

[32] E.G. Rodikova: Factorization and description of zero sets of a class of functions, analytic in the unit disk. Sib. Elektron. Mat. Izv. 11 (2014) 52-63. (In Russian)

[33] E.G. Rodikova: Factorization, root sets and interpolation in weighted classes of analytic functions. Dissertation, Bryansk, (2014) ,121 p. (In Russian) (2014)

[34] E.G. Rodikova: On zeros of analytic classes of Privalov. Abstracts of Saratov winter school, Saratov 1 (39) (2012) 141-142. (In Russian)

[35] E. Seneta: Regularly varying functions. Nauka, Moscow (1985). (In Russian)

[36] F.A. Shamoyan: Description of closed ideals and some issues of factorization in algebras of growing functions, analytic in the disk. Izv. Acad. nauk ArmSSR, Matematika 5 (1970) 450-472. (In Russian)

[37] F.A. Shamoyan: Djrbashian's factorization theorem and characterization of zeros of analytic functions in a disk with bounded growth rate. Izv. Acad. nauk ArmSSR, Matematika 13 (1978) 405-422. (In Russian)

[38] F.A. Shamoyan: Some remarks to parametric representation of Nevanlinna-Djrbashian. Mat. zametki. 52 (1992) 128-140. (In Russian)

[39] F.A. Shamoyan: Parametric representation and description of zero sets of weighted classes of holomorphic functions in the disk. Sib. Math. Journ. 40 (1999) 1422-1440. (In Russian)

[40] F.A. Shamoyan: Weighted spaces of analytic functions with mixed norm. Bryansk St. Univ., Bryansk, Bryansk State University Publishing House (2014). (In Russian)

[41] F.A. Shamoyan, V.A. Bednazh, O.V. Karbanovich: On classes of analytic functions in a disk with a characteristic R. Nevanlinny and -characteristic of weighted Lp spaces. Sib. Elektron. Mat. Izv. 12 (2015) 150-167. (In Russian)

[42] F.A. Shamoyan, V.A. Bednazh, O.V. Prihodko: On zero sets of some weighted classes of analytc functions in the disk. Vesthik Bryanskogo Universiteta, Bryansk 4 (2008) 85-92. (In Russian)

[43] F.A. Shamoyan, E.G. Rodikova: On characterization of root sets of a weighted class of analytic functions in a disk. Vladikavkaz Mat. Jour. 16 (3) (2014) 64-75. (In Russian)

[44] F.A. Shamoyan, E.N. Shubabko: Parametrical representations of some classes of holomorfic functions in the disc. Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl 113 (2000) 331-338. (In Russian)

[45] F.A. Shamoyan, E.N. Shubabko: On a class of holomorphic functions in a disk. Zapiski Nauchnykh Seminarov POMI. 282 (2001) 244-255. (In Russian)

[46] F.A. Shamoyan, E.N. Shubabko: Introduction in the theory of Lp-classes of meromorphic functions. Bryansk State University Publishing House (2009). (In Russian)

[47] R.F. Shamoyan: On new parametric representations of analytic area Nevanlinna type classes in a circular ring K on a complex plane C. Jour. Sib. Fed. Univ. Math. Phys. 6 (1) (2013) 114-119.

[48] R.F. Shamoyan, H. Li: Descriptions of zero sets and parametric representations of certain new analytic area Nevanlinna type spaces in the unit disk. Kragujevac Journal of Mathematics 34 (2010) 73-89.

[49] R.F. Shamoyan, O.R. Mihic: On zeros of some analytic spaces of area Nevanlinna type in halfplane. Trudy Petrozavodsk St. Univ., Matematika. (17) (2010) 67-72.

[50] R.F. Shamoyan, O.R. Mihic: On some new theorems on certain analytic and meromorphic classes of Nevanlinna type on the complex plane. Kragujevac Math. Journal 37 (1) (2013) 65-85.

[51] R.F. Shamoyan, O.R. Mihic: On zeros sets and embeddings of some new analytic function spaces in the unit disk. Kragujevac Math. Journal 38 (2) (2014) 229-244.

[52] R. Shamoyan, A. Shipka: Integral operators, embedding theorems and Taylor coefficients of area Nevanlinna type spaces of several variables and related problems. Preprint. (2018)

[53] S.V. Shvedenko: Canonical products of Blashke type for spaces of area Nevanlinna type. Mat. Zametki. 37 (2) (1985) 212-219. (In Russian)

[54] S.V. Shvedenko: The Hardy classes and related spaces of analytic functions in the unit circle, in the ball and in the polydisk. Itogi nauki i tehniki, Mat. analiz. 23 (1985) 3-124.

[55] E. Stein: Singular integrals and differentiability properties of functions. Princeton Univ. Press, New Jersey (1970).

[56] M. Tsuji: Canonical product for a meromorphic functions in a unit circle. Journ. Math. Jap. 8 (1) (1956) 7-19.

[57] M. Tsuji: Potential Theory in modern function theory. Maruzen, Tokyo (1959).

[58] V. Zmorovich: On certain spaces of analytic functions in circular rings. Mat. Sbornik 32 (1953) 643-652. (In Russian)