Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents

Open access


In this work, we study the existence and uniqueness of weak solu- tions of fourth-order degenerate parabolic equation with variable exponent using the di erence and variation methods.

[1] B. Andreianov, M. Bendahmane, S. Ouaro: Structural stability for variable exponent elliptic problems, I: The p(x)-Laplacian kind problems. Nonlinear Anal. 73 (2010) 2{24.

[2] L. Ansini, L. Giacomelli: Shear-thinning liquid _lms: macroscopic and asymptotic behavior by quasi-self-similar solutions. Nonlinearity 15 (2002) 2147{2164.

[3] L. Ansini, L. Giacomelli: Doubly nonlinear thin-_lm equations in one space dimension. Arch. Ration. Mech. Anal. 173 (2004) 89{131.

[4] S.N. Antontsev, S.I. Shmarev: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60 (2005) 515{545.

[5] S. Antontsev, S. Shmarev: Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions. Handbook of Di_erential Equations: Stationary Partial Di_erential Equations 3 (2006) 1{100.

[6] S. Antontsev, S. Shmarev: Parabolic equations with anisotropic nonstandard growth conditions. Internat. Ser. Numer. Math. 154 (2006) 33{44.

[7] S. Antontsev, S. Shmarev: Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math. 234 (2010) 2633{2645.

[8] S. Antontsev, S. Shmarev: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl. 361 (2010) 371{391.

[9] M. Bertsch, L. Giacomelli, G. Lorenzo, G. Karali: Thin-_lm equations with Partial wetting energy: Existence of weak solutions. Physica D 209 (2005) 17{27.

[10] V. Bhuvaneswari, L. Shangerganesh, K. Balachandran: Weak solutions for p-Laplacian equation. Adv. Nonlinear Anal. 1 (2012) 319{334.

[11] M. Bowen, J. Hulshof, J. R. King: Anomalous exponents and dipole solutions for the thin _lm equation. SIAM J. Appl. Math. 62 (2001) 149{179.

[12] J. W. Cahn, J. E. Hilliard: Free energy of nonuniform system I. interfacial free energy. J. Chem. Phys. 28 (1958) 258{367.

[13] C. P. Calderon, T. A. Kwembe: Dispersal models. Rev. Union Mat. Argentina 37 (1991) 212{229.

[14] K. Chang: Critical Point Theory and Its Applications. Shangai Sci. Tech. Press, Shangai (1986).

[15] Y. Chen, S. Levine, M. Rao: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006) 1383{1406.

[16] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces With Variable Exponents. Springer-Verlag, Heidelberg (2011).

[17] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Di_erential Equations. American Mathematical Society, Providence, RI (1990).

[18] W. Gao, Z. Guo: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl. 191 (2012) 551{562.

[19] Z. Guo, Q. Liu, J. Sun, B. Wu: Reaction-di_usion systems with p(x)-growth for image denoising. Nonlinear Anal. RWA 12 (2011) 2904{2918.

[20] J. R. King: Two generalization of the thin _lm equation. Math. Comput. Modeling 34 (2001) 737{756.

[21] J. Lions: Quelques Methodes de Resolution des Problems aux Limites Non lineaire. Dunod Editeur Gauthier Villars, Paris (1969).

[22] C. Liu: Some properties of solutions for the generalized thin _lm equation in one space dimension. Boletin de la Asociacion Matematica venezolana 12 (2005) 43{52.

[23] C. Liu, J. Yin, H. Gao: On the generalized thin _lm equation. Chin. Ann. Math. 25 (2004) 347{358.

[24] M. Ruzicka: Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin (2000).

[25] M. Xu, S. Zhou: Existence and uniqueness of weak solutions for a generalized thin _lm equation. Nonlinear Anal. 60 (2005) 755{774.

[26] M. Xu, S. Zhou: Stability and regularity of weak solutions for a generalized thin _lm equation. J. Math. Anal. Appl. 337 (2008) 49{60.

[27] A. Zang, Y. Fu: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal. 69 (2008) 3629{3636.

[28] C. Zhang, S. Zhou: A fourth-order degenerate parabolic equation with variable exponent. J. Part. Di_. Eq.(2009) 1{16.

[29] C. Zhang, S. Zhou: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data. J. Di_erential Equations 248 (2010) 1376{1400.

[30] S. Zhou: A priori L1-estimate and existence of weak solutions for some nonlinear parabolic equations. Nonlinear Anal. 42 (2000) 887{904.

Journal Information

CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.476

Mathematical Citation Quotient (MCQ) 2017: 0.43

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 303 303 34
PDF Downloads 105 105 4