Generalized Higher Derivations on Lie Ideals of Triangular Algebras

Open access

Abstract

Let be the triangular algebra consisting of unital algebras A and B over a commutative ring R with identity 1 and M be a unital (A; B)-bimodule. An additive subgroup L of A is said to be a Lie ideal of A if [L;A] ⊆ L. A non-central square closed Lie ideal L of A is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on A, every generalized Jordan triple higher derivation of L into A is a generalized higher derivation of L into A.

[1] M. Ashraf, A. Khan, C. Haetinger: On (σ,τ)-higher derivations in prime rings. Int. Electron. J. Math. 8 (1) (2010) 65{79.

[2] M. Ashraf, A. Khan: On generalized (σ,τ)-higher derivations in prime rings. SpringerPlus 38 (2012).

[3] R. Awtar: Lie ideals and Jordan derivations of prime rings. Proc. Amer. Math. Soc. 90 (1) (1984) 9{14.

[4] J. Bergen, I. N. Herstein, J. W. Kerr: Lie ideals and derivations of prime rings. J. Algebra 71 (1981) 259{267.

[5] M. Bre¹ar: On the distance of the composition of two derivations to the generalized derivations. Glasgow Math. J. 33 (1991) 89{93.

[6] S. U. Chase: A generalization of the ring of triangular matrices. Nagoya Math. J. 18 (1961) 13{25.

[7] W. Cortes, C. Haetinger: On Jordan generalized higher derivations in rings. Turkish J. Math. 29 (1) (2005) 1{10.

[8] M. Ferrero, C. Haetinger: Higher derivations and a theorem by Herstein. Quaest. Math. 25 (2) (2002) 249{257.

[9] M. Ferrero, C. Haetinger: Higher derivations of semiprime rings. Comm. Algebra 30 (5) (2002) 2321{2333.

[10] C. Haetinger: Higher derivation on Lie ideals. Tend. Mat. Apl. Comput. 3 (1) (2002) 141{145.

[11] C. Haetinger, M. Ashraf, S. Ali: On Higher derivations: a survey. Int. J. Math. Game Theory Algebra 19 (5/6) (2011) 359{379.

[12] D. Han: Higher derivations on Lie ideals of triangular algebras. Sib. Math. J. 53 (6) (2012) 1029{1036.

[13] F. Hasse, F. K. Schmidt: Noch eine Begründung der Theorie der höheren DiKerentialquotienten einem algebraischen Funktionenköroer einer Unbestimmten. J. reine angew. Math. 177 (1937) 215{237.

[14] W. Jing, S. Lu: Generalized Jordan derivations on prime rings and standard operator algebras. Taiwanese J. Math. 7 (4) (2003) 605{613.

[15] Y. S. Jung: Generalized Jordan triple higher derivations on prime rings. Indian J. Pure Appl. Math. 36 (9) (2005) 513{524.

[16] C. Lanski, S. Montgomery: Lie structure of prime rings of characteristic 2. Paci_c J. Math. 42 (1972) 117{136.

[17] A. Nakajima: On generalized higher derivations. Turk. J. Math. 24 (3) (2000) 295{311.

[18] Z. H. Xiao, F. Wei: Jordan higher derivations on triangular algebras. Linear Algebra Appl. 432 (2010) 2615{2622.

Journal Information

CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.476

Mathematical Citation Quotient (MCQ) 2017: 0.43

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 30
PDF Downloads 66 66 12