An approximation theorem for solutions of degenerate semilinear elliptic equations

Open access


The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.


  • [1] A. C. Cavalheiro: An approximation theorem for solutions of degenerate elliptic equations. Proc. Edinb. Math. Soc. 45 (2002) 363{389. doi: 10.1017/S0013091500000079

  • [2] A. C. Cavalheiro: Existence of solutions in weighted Sobolev spaces for some degenerate semilinear elliptic equations. Appl. Math. Lett. 17 (2004) 387{391. doi:10.1016/S0893-9659(04)00043-6

  • [3] A. C. Cavalheiro: Existence results for the Dirichlet problem of some degenerate nonlinear elliptic equations. J. Appl. Anal. 20 (2) (2014) 145{154. doi:10.1515/jaa-2014-0016

  • [4] A. C. Cavalheiro: Uniqueness of solutions for some degenerate nonlinear elliptic equations. Appl. Math. (Warsaw) 41 (1) (2014) 93{106.

  • [5] A. C. Cavalheiro: Existence and uniqueness of solutions for the Navier problems with degenerate nonlinear elliptic equations. Note Mat. 25 (2) (2015) 1{16.

  • [6] E. Fabes, C. Kenig, R. Serapioni: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Di erential Equations 7 (1982) 77{116. doi:10.1080/03605308208820218

  • [7] J. C. Fernandes, B. Franchi: Existence and properties of the Green function for a class of degenerate parabolic equations. Rev. Mat. Iberoam. 12 (1996) 491{525.

  • [8] J. Garcia-Cuerva, J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116 (1985).

  • [9] J. Heinonen, T. Kilpeläinen, O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs, Clarendon Press (1993).

  • [10] A. Kufner: Weighted Sobolev Spaces. John Wiley & Sons, New York (1985).

  • [11] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972) 207{226.

  • [12] A. Torchinsky: Real-Variable Methods in Harmonic Analysis. Academic Press, San Diego (1986).

  • [13] B. O. Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer-Verlag (2000). Lecture Notes in Math.

Journal Information

Mathematical Citation Quotient (MCQ) 2016: 0.28

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 4 4 4