On a class of (p; q)-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain

Open access


Let Ω ⊂ ℝn be a bounded starshaped domain and consider the (p; q)-Laplacian problem

-∆pu - ∆pu = λ(x)|u|p*-2u + μ|u|r-2u

where μ is a positive parameter, 1 < q ≤ p < n, r ≥ p* and is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the (p; q)-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.

[1] V. Benci, G. Cerami: Existence of positive solutions of the equation ∆_u + a(x)u = u(N+2)=(N∆2) in RN. J. Funct. Anal. 88 (1990) 91{117.

[2] V. Benci, P. D’Avenia, D. Fortunato, L. Pisani: Solitons in several space dimensions: Derrick’s problem and in_nitely many solutions. Arch. Ration. Mech. Anal. 154 (4) (2000) 297{324.

[3] V. Benci, A. M. Micheletti, D. Visetti: An eigenvalue problem for a quasilinear elliptic _eld equation. J. Di_er. Equ. 184 (2) (2002) 299{320.

[4] P. Candito, S. A. Marano, K. Perera: On a class of critical (p; q)-Laplacian problems. Nonlinear Di_er. Equ. Appl. 22 (2015) 1959{1972.

[5] L. Cherfils, Y. Iåyasov: On the stationary solutions of generalized reaction di_usion equations with p&q-Laplacian. Commun. Pure Appl. Anal. 4 (1) (2005) 9{22.

[6] G. H. Derrick: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5 (1964) 1252{1254.

[7] P. C. Fife: Mathematical aspects of reacting and di_using systems. Springer, Berlin (1979).

[8] G. M. Figueiredo: Existence of positive solutions for a class of p&q elliptic problems with critical growth on Rn. J. Math. Anal. Appl. 378 (2011) 507{518.

[9] R. Filippucci, P. Pucci, F. Robert: On a p-Laplace equation with multiple critical nonlinearitie. J. Math. Pures Appl 91 (2009) 156{177.

[10] N. Ghoussoub, C. Yuan: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352 (2000) 5703{5743.

[11] M. Guedda, L. Véron: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13 (1989) 879{902.

[12] Q. Guo, J. Han, P. Niu: Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains. Nonlinear Analysis 75 (2012) 5765{5786.

[13] D. Kang: Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term. J. Math. Anal. Appl. 341 (2008) 764{782.

[14] G. B. Li, X. Liang: The existence of nontrivial solutions to nonlinear elliptic equation of p ∆ q-Laplacian type on RN. Nonlinear Anal. 71 (2009) 2316{2334.

[15] Y. Li, B. Ruf, Q. Guo, P. Niu: Quasilinear elliptic problems with combined critical Sobolev-Hardy terms. Annali di Matematica 192 (2013) 93{113.

[16] R. López: Constant Mean Curvature Surfaces with Boundary. Springer Monographs in Mathematics (2013).

[17] S. A. Marano, N. S. Papageorgiou: Constant-sign and nodal solutions of coercive (p; q)-Laplacian problems. Nonlinear Anal. 77 (2013) 118{129.

[18] M. S. Shahrokhi-Dehkordi, A. Taheri: Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps. Journal of Convex Analysis 17 (1) (2010) 69{79.

[19] M. Sun: Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance. J. Math. Anal. Appl. 386 (2) (2012) 661{668.

[20] H. Wilhelmsson: Explosive instabilities of reaction-di_usion equations. Phys. Rev. A 36 (2) (1987) 965{966.

[21] H. Yin, Z. Yang: A class of p ∆ q-Laplacian type equation with concave-convex nonlinearities in bounded domain. J. Math. Anal. Appl. 382 (2011) 843{855.

Journal Information

CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.476

Mathematical Citation Quotient (MCQ) 2017: 0.43

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 215 29
PDF Downloads 107 107 17