A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself

Open access


In this note, we prove that there is no transcendental entire function f(z) ∈ ℚ[[z]] such that f(ℚ) ⊆ ℚ and den f(p/q) = F(q), for all sufficiently large q, where F(z) ∈ ℤ[z].

[1] K. Mahler: Arithmetic properties of lacunary power series with integral coefficients. J. Austral. Math. Soc. 5 (1965) 56{64.

[2] K. Mahler: Some suggestions for further research. Bull. Austral. Math. Soc. 29 (1984) 101{108.

[3] E. Maillet: Introduction ¸ la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. Gauthier-Villars, Paris (1906).

[4] D. Marques, C.G. Moreira: A variant of a question proposed by K. Mahler concerning Liouville numbers. Bull. Austral. Math. Soc. 91 (2015) 29{33.

[5] D. Marques, J. Ramirez: On transcendental analytic functions mapping an uncountable class of U-numbers into Liouville numbers. Proc. Japan Acad. Ser. A Math. Sci. 91 (2015) 25{28.

[6] D. Marques, J. Ramirez, E. Silva: A note on lacunary power series with rational coe_cients. Bull. Austral. Math. Soc. 93 (2015) 1{3.

[7] D. Marques, J. Schleischitz: On a problem posed by Mahler. J. Austral. Math. Soc. 100 (2016) 86{107.

Journal Information

Mathematical Citation Quotient (MCQ) 2016: 0.28

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 19
PDF Downloads 24 24 9