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Abstract: In this study, we analyse the performance of option pricing models using 5-minutes transactional data for 
the Japanese Nikkei 225 index options. We compare 6 different option pricing models: the Black (1976) model with 
different assumptions about the volatility process (realized volatility with and without smoothing, historical vola-
tility and implied volatility), the stochastic volatility model of Heston (1993) and the GARCH(1,1) model. To assess 
the model performance, we use median absolute percentage error based on differences between theoretical and 
transactional options prices. We present our results with respect to 5 classes of option moneyness, 5 classes of option 
time to maturity and 2 option types (calls and puts). The Black model with implied volatility (BIV) comes as the best 
and the GARCH(1,1) as the worst one. For both call and put options, we observe the clear relation between average 
pricing errors and option moneyness: high error values for deep OTM options and the best fit for deep ITM options. 
Pricing errors also depend on time to maturity, although this relationship depend on option moneyness. For low 
value options (deep OTM and OTM), we obtained lower errors for longer maturities. On the other hand, for high 
value options (ITM and deep ITM) pricing errors are lower for short times to maturity. We obtained similar average 
pricing errors for call and put options. Moreover, we do not see any advantage of much complex and time-con-
suming models. Additionally, we describe liquidity of the Nikkei225 option pricing market and try to compare 
the results we obtain here with a detailed study for Polish emerging option market (Kokoszczyński et al. 2010b).

Keywords: Option pricing models, high-frequency data, realized volatility, implied volatility, stochastic volatility, 
emerging markets
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1  Introduction

The quest for the best option pricing model is at least 
40 years old, but going back into the past, we could find 
its traces even few centuries earlier (e.g., the speculation 
during tulipomania or the South Sea bubble).

The futures option pricing model (Black 1976) began 
a new era of futures option valuation theory. The rapid 
growth of option markets in the 1970s5 brought rapidly 
a lot of data and stimulated an impressive development 
of research in this area. Quite soon, numerous empiri-
cal studies put in doubt basic assumptions of the Black 
model: they strongly suggest that the geometric Brown-
ian motion is not a realistic assumption. Many under-
lying return series display negative skewness and 
excess kurtosis  (see Bates 1995, Bates 2003). Moreover, 
the implied volatility calculated from the Black-Scholes 
model often vary with the time to maturity of the option 
and the strike price  (cf. Rubinstein 1985, Tsiaras 2009). 
These observations drove many researchers to propose 
new models that each relaxes some of those restrictive 
assumptions of the Black-Scholes model (Broadie and 
Detemple 2004, Garcia et al. 2010, Han 2008, Mitra 2009). 
Based  on Han  (2008), we  can  divide  these  researchers 
into a few groups. The first one engages into extending 
Black-Scholes-Merton framework by incorporating sto-
chastic jumps or stochastic volatility (Amin and Jarrow 
1992, Hull and White 1987), another one goes into esti-
mating the stochastic density function of the underlying 
asset directly from the market option prices (Derman 
and Kani 1994, Dupire 1994) or using other distribution 
of the rate of return on the underlying asset rather than 
normal distributions (Jarrow and Rudd 1982, Corrado 
and Su 1996, Rubinstein 1998, Lim et al.  2005).  On 
the other hand, the Black-Scholes model is still widely 
used not only as a benchmark in comparative studies 
testing various option pricing models, but also among 
the market participants. Christoffersen and Jacobs (2004) 
show that much of its appeal is related to the treatment 
of volatility – the only parameter of the Black-Scholes 
model, however, is not directly observed.

Detailed analysis of the literature (An and Suo 2009, 
Andersen et al.  2007, Bates 2003, Brandt and Wu 2002, 
Ferreira et al. 2005, Mixon 2009, Raj and Thurston 1998) 
seems to suggest that the BSM model with implied vol-
atility calculated on the basis of the last observation 
performs quite well even when compared with many 

5 The Chicago Board of Options Exchange was founded in 1973 and it 
adopted the Black-Scholes model for option pricing in 1975.

different and more sophisticated pricing models (stand-
ard BSM model, BSM with realized volatility, GARCH 
option pricing models or various stochastic volatility 
models).

Our motivation for this paper is to check the results 
of Kokoszczyński et al. (2010a), who conducted a similar 
study  for  emerging  market  HF  data  (WIG20  index 
options).6 Their results show that the Black model with 
implied volatility (BIV) gives the best results, the Black 
model with historical volatility (BHV) is slightly worse 
and the Black model with realized volatility (BRV) gives 
clearly the worst results.

The complex comparison of Black model with differ-
ent volatility assumptions presented only for an emerg-
ing market is definitely not enough to formulate con-
clusions of a more general nature. Therefore, we have 
decided to compare the results for the Polish emerging 
market with a similar research for the developed Jap-
anese market. For this purpose, we choose the Nikkei 
225 index option market (European style), which can be 
regarded as one of the most important option markets in 
the world, especially when we consider the level of its 
innovation and complexity. As a result, we hope we will 
be able to suggest some more general conclusions.

After a thorough analysis, we can say that the litera-
ture regarding the Japanese capital market and especially 
European style index options, is not so rich and this is 
our second motivation to write this paper. The reason 
for this can be that Nikkei 225 index is the basis instru-
ment for many different derivatives that are quoted on 
many different exchanges and the literature is widely 
dispersed. We can easily find some papers focusing on 
pricing American style options or options quoted in dif-
ferent currency than Yen. On the other hand, the papers 
in English focusing on the European style Nikkei 
255 index options are not so numerous.7 The literature 
on American style options shows quite good results for 
the Black model (Raj and Thurston 1998), sometimes 
better than for various GARCH models (Iaquinta 2007). 
When we consider the second case (options in other 
currencies), we actually model not only option prices 
but the exchange rate fluctuations as well (Wei 1995); 
thus, the comparison of their results with ours could be 
regarded as not valid.

6 The  WIG20 is the  index of twenty largest companies listed on 
the Warsaw Stock Exchange (further detailed information may be found 
at www.gpw.pl).
7 Unfortunately, because of language barrier we were not able to ex-
tend our literature review to papers written in Japanese.
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Therefore, we are left with the very limited number 
of studies that focus on the European style options or 
otherwise touch this subject, sometimes only in an indi-
rect way. Li  (2006)  shows  that Nikkei  225  is  rather  an 
efficient market (in the sense of lack of arbitrage possi-
bilities analysed through the existence of put-call parity). 
Yao et al.  (2000)  compare  the BSM model with histori-
cal volatility with pricing done via neural networks 
and show that in some cases (mainly for ATM options) 
the BSM model gives better results. Kanoh and Takeuchi 
(2006) once again show that the BSM model is better (in 
terms of the RMSE statistics) from GARCH (1,1) and 
E-GARCH (1,1) model. On the other hand, Mitsui and 
Satoyoshi (2006) got better results for GARCH-T model 
for almost all moneyness classes, but their results are 
based on strong assumptions concerning the type of dis-
tribution of the basis instrument.

This review, covering those Nikkei 225 index options 
studies that are comparable with our approach, justifies 
quite strongly the positive assessment of the BSM model. 
We are going to check this by using the high-frequency 
data from 2008.

The structure of this paper has been planned in such 
a way as to answer the following detailed questions:
• Which model from among those we test can be 

treated as the best one?
• Can we observe any distinctive patterns in option 

pricing taking into account moneyness ratio (MR) 
and time to maturity (TTM)?

• Can we distinguish any patterns of liquidity behav-
iour in a developed market using transactional data?

• What is the proper measure of average pricing error? 
Is it robust to large errors that are likely to emerge 
when analysing HF data?

• Is there any substantial difference between 
the results for a developed (this paper) and an 
emerging market (Kokoszczyński et al. 2010a)?

The remainder of this paper is organized as follows. 
The second section describes some methodological 
issues. Next section presents data and the fluctuations 
of volatility processes derived from transactional data. 
The fourth section discusses the liquidity issues. Results 
are presented in section five and the last section con-
cludes.

2  Option pricing methodology

2.1  The Black option pricing model with 
historical, realized and implied volatility

The basic pricing model we choose is the Black-Scholes 
model for futures prices, that is, the Black model (Black 
1976). We call it further in the text the BHV model – 
the Black model with historical volatility. Below are for-
mulas for this model:

c = e–rf T[FN(d1) − KN(d2) (1)

p = e–rf T[KN(−d2) − FN(−d1) (2)

where:

𝑑𝑑1 =
ln (𝐹𝐹𝐾𝐾) + 𝜎𝜎2𝑇𝑇/2

𝜎𝜎√𝑇𝑇
  (3)

𝑑𝑑2 =
ln (𝐹𝐹𝐾𝐾) − 𝜎𝜎2𝑇𝑇/2

𝜎𝜎√𝑇𝑇
= 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇  (4)

where c and p are respectively valuations of a call and 
a put option, T is time to maturity, rf is the risk-free rate, 
F – the futures price, K – underlying strike, σ – volatil-
ity of underlying and N(∙)  is  the  cumulative  standard 
normal distribution.

There are two reasons why we decided to use 
the Black model instead of the standard Black-Scholes 
model. First, we are able to relax the assumption about 
continuous dividend pay-outs.8 Second, we can use addi-
tional data because usually derivatives (options, futures, 
etc.) are quoted much longer than the basis instruments 
(e.g., Nikkei 225 index).

To further justify such an approach, we assume 
that we can price a European style option on Nikkei 
225 index applying the Black model for futures contract 
(with historical, realized and implied volatility), where 
Nikkei 225 index futures contract is the basis instrument. 
This is possible due to the following facts:

Nikkei 225 index futures expire exactly on the same 
day as Nikkei 225 index options do, the expiration prices 

8 In this way, we are able to eliminate two possible source of pricing 
error: the necessity to estimate the dividend yield and the assumption 
about continuous payouts.
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are set exactly in the same way, we study only Europe-
an-style options; hence, early expiration – like in the case 
of American options – is impossible.9

One of the most important issues about option 
pricing is the nature of an assumption concerning 
the specific type of volatility process. Therefore, we 
check the properties of the Black model with three dif-
ferent types of volatility estimators: historical volatility, 
realized volatility and implied volatility, and addition-
ally, we use the Heston model and the GARCH option 
pricing model. Below we provide a brief description of 
each of these volatility estimators and models.

The historical volatility (HV) estimator is based on 
the formula:

𝑉𝑉𝑉𝑉𝑉𝑉∆𝑛𝑛 =
1

(𝑁𝑁∆ ∗ 𝑛𝑛) − 1∑∑(𝑟𝑟𝑖𝑖,𝑡𝑡 − �̅�𝑟)2
𝑁𝑁∆

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1
  (5)

where:
• 𝑉𝑉𝑉𝑉𝑉𝑉∆𝑛𝑛 =

1
(𝑁𝑁∆ ∗ 𝑛𝑛) − 1∑∑(𝑟𝑟𝑖𝑖,𝑡𝑡 − �̅�𝑟)2

𝑁𝑁∆

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1
  – variance of log returns calculated on high 

frequency data on the basis of last n days
• ri,t – log return for i-th interval on day t with sam-

pling  frequency  equal  to Δ, which  is  calculated  in 
the following way:

ri,t = log Ci,t − log Ci − 1,t (6)

• Ci,t – close price for i-th interval on day t with sam-
pling frequency equal to Δ

• NΔ – number of Δ intervals during the stock market 
session

• n – memory of the process measured in days, used in 
the calculation of respective estimators and average 
measures

• �̅�𝑟 = 1
(𝑁𝑁∆ ∗ 𝑛𝑛) − 1∑∑𝑟𝑟𝑖𝑖,𝑡𝑡

𝑁𝑁∆

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1
  – average log return calculated for last n days with 

sampling frequency Δ, which is calculated in the fol-
lowing way:

�̅�𝑟 = 1
(𝑁𝑁∆ ∗ 𝑛𝑛) − 1∑∑𝑟𝑟𝑖𝑖,𝑡𝑡

𝑁𝑁∆

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1
  (7)

In this research, we use NΔ = 1, and hence, the HV 
estimator is simply standard deviation for log returns 
based on the daily interval. This approach is commonly 
used by the wide range of market practitioners.

The second approach is the realized volatility (RV) 
estimator proposed early by Black (1976) and Taylor 

9 Early expiration of American-style option could result in the signif-
icant error in the  case of such a pricing, because of the  difference in 
prices of index futures and of Nikkei 225 index before the  expiration 
date (the basis risk).

(1986) and further popularised by Bollerslev (cf. Ander-
sen et al. 2001). It is based on squared log returns summed 
over the time interval of NΔ. 

𝑅𝑅𝑅𝑅∆,𝑡𝑡 =∑𝑟𝑟𝑖𝑖,𝑡𝑡2
𝑁𝑁∆

𝑖𝑖=1
  (8)

The implied volatility (IV) estimator is based on 
the last observed market option price. It assumes that 
all parameters (with the exception of sigma) are also 
known. We calculate the implied volatility for the last 
market price for each option and then average them sep-
arately for each class of TTM and moneyness ratio, and 
for both call and put options.10 Hence, for each obser-
vation, we have 50 different IV values (5 × 5 × 2). These 
values are then treated as an input variable for volatility 
parameter in calculations of the theoretical options price 
for the Black model with the implied volatility (BIV) for 
the next observation.

Before entering into the formula for the Black model, 
the HV and RV estimators have to be annualized and 
transformed into standard deviation. The formula for 
the annualization of the HV estimator is as follows:

𝐻𝐻𝐻𝐻 = 𝑆𝑆𝑆𝑆∆𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 = √252𝑁𝑁∆𝐻𝐻𝑉𝑉𝑉𝑉∆𝑛𝑛  (9)

Contrary to the HV estimator, which is based on 
information from many periods (n > 1), RV estimator 
requires information only from a single period (time 
interval of Δ). Therefore, the procedure of averaging and 
annualizing realized volatility estimator is slightly dif-
ferent from that presented in formula (9):

[𝑅𝑅𝑅𝑅]∆𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠 = √252 1𝑛𝑛∑[𝑅𝑅𝑅𝑅]∆,𝑡𝑡
𝑛𝑛

𝑡𝑡=1
   (10)

Having all these volatility estimators and addition-
ally the Heston and GARCH (1,1) option pricing models 
we present below, we study several types of option 
pricing models, which will be described in details in 
section 2.5.

10 We divide 320 options (160 call and 160 put options) into 5 money-
ness ratio classes and 5 time-to-maturity classes. The details of this clas-
sification are presented in Section 3.
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2.2  The GARCH Model

Many classical option pricing models (e.g., the Black 
model) assume the constant level of volatility of log-re-
turns of basis instruments. However, in reality, many 
financial time series are characterized by time varying 
volatility. GARCH models are one possible way to relax 
this initial assumption. They were proposed by Engle 
(1982) and Bollerslev (1986). GARCH model describes 
the dynamic of returns of the basis instruments with fol-
lowing equations:

𝑟𝑟𝑡𝑡 = 𝜀𝜀𝑡𝑡  (11)

𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡√ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡~𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁(0,1)  (12)

ℎ𝑡𝑡 = 𝛼𝛼0 +∑𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2
𝑞𝑞

𝑖𝑖=1
+∑𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1
  (13)

where 𝑟𝑟𝑡𝑡 = ln ( 𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡−1

) ,

St is the price of the basis instrument in the moment t, 
and p and q define the order of GARCH (p,q) model. 
Currently, we have many extensions of standard 
GARCH(p,q) model, which mainly differ by the specifica-
tion of the conditional variance equation and by various 
assumptions concerning the conditional distributions 
of residuals in the mean equation. Through the years, 
GARCH models have become the standard approach in 
volatility modelling, asset pricing, financial time series 
forecasting or risk management. Examples of this kind 
of research can be found in Bollerslev et al. (1988), Boller-
slev et al. (1994), Campbell and Hentschel (1992), French 
et al. (1987), Glosten et al. (1993), Maheu and McCurdy 
(2004), Pagan and Schwert (1990), whereas the detailed 
description of GARCH models can be found in Boller-
slev et al. (1992) or Campbell et al. (1997).

Finally, the GARCH models are also used in 
the option pricing models. Duan (1995) presents 
the methodology of European style call option pricing 
with the assumption that returns of the basis instrument 
can be described with the GARCH process. In order to 
become risk neutral in this approach, we differentiate 
between physical and martingale (risk free) probability 
measure. Garcia and Renault (1998) describe theoretical 
aspects of using GARCH models in risk hedging strat-
egies, while Ritchken and Trevor (1999) use GARCH 
models in the American style option pricing applying 

trinomial trees. Duan et al. (2004) extend the methodol-
ogy presented in his previous paper through inclusion of 
volatility jumps in prices of the basis instrument.

Option pricing based on GARCH model has been 
done here according to Duan (1995). This approach 
assumes that log returns undergo GARCH-M(p,q) 
process described by the following equations: 

𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑓𝑓 + 𝛿𝛿√ℎ𝑡𝑡 −
1
2ℎ𝑡𝑡 + 𝜀𝜀𝑡𝑡  (14)

𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡√ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡~𝑁𝑁(0,1)  (15)

ℎ𝑡𝑡 = 𝛼𝛼0 +∑𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2
𝑞𝑞

𝑖𝑖=1
+∑𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1
  (16)

where parameters are denoted in the same way as in 
earlier formulas, and additionally, δ in equation (14) is 
interpreted as a unit risk premium.

The pricing of options are conducted assuming 
local risk-neutral valuation. It requires modification of 
log returns processes in such a way that the conditional 
variance one step ahead remains unchanged and simul-
taneously conditional expected return equals risk-free 
rate  (Fiszeder  2008).  Introduction  of  risk-neutral  prob-
abilistic measure Q enables us to price options through 
discounting expected option payoff.

The dynamic of basis instrument log returns with 
respect to measure Q can be described as follows:

𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑓𝑓 −
1
2ℎ𝑡𝑡 + 𝜉𝜉𝑡𝑡  (17)

𝜉𝜉𝑡𝑡 = 𝑢𝑢𝑡𝑡√ℎ𝑡𝑡, 𝑢𝑢~𝑁𝑁(0,1)  (18)

ℎ𝑡𝑡 = 𝛼𝛼0 +∑𝛼𝛼𝑖𝑖(𝜉𝜉𝑡𝑡 − 𝛿𝛿√ℎ𝑡𝑡−1)
2

𝑞𝑞

𝑖𝑖=1
+∑𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1
  (19)

The formula describing the dependence between 
the price of basis instrument on maturity day and its 
price in the time of pricing can be described:

𝑆𝑆𝑇𝑇 = 𝑆𝑆𝑡𝑡 exp [𝑟𝑟𝑓𝑓(𝑇𝑇 − 𝑡𝑡) − 1
2 ∑ ℎ𝑖𝑖

𝑇𝑇

𝑖𝑖=𝑡𝑡+1
+ ∑ 𝜉𝜉𝑖𝑖

𝑇𝑇

𝑖𝑖=𝑡𝑡+1
]   (20)

while the price of European style call option is described 
by the discounted value of the option price on the matu-
rity day:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = exp (−𝑟𝑟𝑓𝑓(𝑇𝑇 − 𝑡𝑡)) 𝐸𝐸𝑄𝑄[max(𝑆𝑆𝑇𝑇 − 𝑋𝑋, 0) |𝜓𝜓𝑡𝑡]  (21)
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where EQ is the operator of conditional expected value 
with respect to Q measure.

In practice, the pricing is done through Monte Carlo 
simulation. In the first stage, we estimate the parameters 
of the model (14), (15) and (16), and then on the basis 
of (17), (18), (19), and (20), we simulate N realization of 
basis instrument price. Call and put option prices are 
then calculated in the following way:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = exp (−𝑟𝑟𝑓𝑓(𝑇𝑇 − 𝑡𝑡)) 1𝑁𝑁∑max(𝑆𝑆𝑇𝑇𝑇𝑇 − 𝑋𝑋, 0)
𝑁𝑁

𝑇𝑇=1
  (22)

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 = exp (−𝑟𝑟𝑓𝑓(𝑇𝑇 − 𝑝𝑝)) 1𝑁𝑁∑max(𝑋𝑋 − 𝑆𝑆𝑇𝑇𝑇𝑇, 0)
𝑁𝑁

𝑇𝑇=1
  (23)

We use GARCH-M(1,1) model in this study.11 Many 
research papers show that this order of the model defines 
the dynamics of stock index returns in the most adequate 
way (Hansen and Lunde 2004 or Zivot 2008). Similarly, 
like in the case of the BSM model, we use index returns. 
We estimate the parameters of the equations (14), 
(15)  and  (16) on  the basis of data  from 1/1/2007 until 
the moment of option pricing. As a result, the size of 
sample used to estimate the GARCH parameters varies 
from one year (for pricing done on 2nd January, 2008) to 
1.5 year (for pricing done on 30th June, 2008). In order 
to eliminate problems with instability of GARCH model 
parameters, we have decided to delete overnight returns 
from our data sample.

The number of replications in Monte Carlo simula-
tions is another important choice to be made. Finance 
literature suggests strongly that N = 10,000 gives an ade-
quate precision of estimates. However, due to the very 
large number of pricing (5-minute data) we need, we 
have  to  limit  the  number  of  replication  to  N  =  1000. 
In order to minimize possible negative effects of that 
choice, we use two popular variance reduction tech-
niques: antithetic variables sampling and control vari-
ates. The data we use in this study are described in detail 
in section 3.

2.3  The Heston Model

Log returns volatility in stochastic volatility models is 
represented by a given stochastic volatility process with 
dynamics set a priori. Hull and White (1987) are among 

11 In the results section we will refer to this model as to GARCH(1,1).

the pioneers of applying stochastic volatility for option 
pricing. They assume that variance dynamics can be 
described with the following differential equation:

dVt = a(b − Vt)dt + cVt dZt (24)

Under additional assumption – that volatility is not 
correlated with the basis instruments – Hull and White 
present the analytical formula for European style call 
option. One of the main conclusions of their research 
is that the BSM model systematically underestimates 
the prices of ITM and OTM options, and overestimates 
the prices of ATM options.12

The Heston model we used in our research is 
an extension of Stein and Stein (1991). Their option 
pricing formula assumes that volatility is described by 
the Ornstein-Uhlenbeck process and is not correlated 
with the basis instrument. On the other hand, Heston 
(1993) presents the call option pricing formula with no 
assumption on correlation of volatility with the basis 
instrument. His model assumes that the dynamics of 
underlying asset price St and its volatility Vt are given 
by the following set of differential equations:

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝜇𝜇𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + √𝑉𝑉𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡
1  (25)

𝑑𝑑𝑉𝑉𝑡𝑡 = 𝜅𝜅(𝜃𝜃 − 𝑉𝑉𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎√𝑉𝑉𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡
2  (26)

𝑑𝑑𝑊𝑊𝑡𝑡
1𝑑𝑑𝑊𝑊𝑡𝑡

2 = 𝜌𝜌𝑑𝑑𝜌𝜌  (27)

where {St}t ≥ 0 and {Vt}t ≥ 0 indicate the price and the vari-
ance of the basis instrument, and dWt

1
t ≥ 0 and dWt

2
t ≥ 0 are 

correlated Brownian motion processes (with parameter 
of correlation p). Additionally, it is assumed that {Vt}t ≥ 0 
is a mean reverting process, with long memory expected 
value θ and mean reverting coefficient κ. The parameter 
σ is defined as volatility of volatility.

One of the main reasons, why the Heston (1993) 
model has become so popular is the fact that it is pos-
sible to obtain its closed-form solution for the European 
style call option pricing for an asset not paying dividend, 
which is given by:

C(St, Vt, t, T) = St P1 − Ke−rf (T − t)P2 (28)

where

12 The constant volatility assumption is responsible for this drawback 
of the BSM model.
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𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝐾𝐾) = 1
2 + 1

𝜋𝜋 ∫ 𝑅𝑅𝑅𝑅 {
𝑅𝑅−𝑖𝑖𝑖𝑖 ln(𝐾𝐾)𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙)

𝑖𝑖𝑖𝑖 } 𝑑𝑑𝜙𝜙 
∞

0
 

𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙) = exp {𝑟𝑟𝜙𝜙𝑖𝑖𝑟𝑟𝑓𝑓 + 𝑎𝑎
𝜎𝜎2 [(𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖)𝜏𝜏 − 2ln (1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔 )] +
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑

𝜎𝜎2 ( 1 − 𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓
) + 𝑖𝑖𝜙𝜙 ln(𝑆𝑆𝑡𝑡)} 

𝑔𝑔 =
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑑𝑑 

𝑑𝑑 = √(𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑏𝑏𝑗𝑗)2 − 𝜎𝜎2(2𝑢𝑢𝑗𝑗𝜙𝜙𝑖𝑖 − 𝜙𝜙2) 

 

(29)

𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝐾𝐾) = 1
2 + 1

𝜋𝜋 ∫ 𝑅𝑅𝑅𝑅 {
𝑅𝑅−𝑖𝑖𝑖𝑖 ln(𝐾𝐾)𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙)

𝑖𝑖𝑖𝑖 } 𝑑𝑑𝜙𝜙 
∞

0
 

𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙) = exp {𝑟𝑟𝜙𝜙𝑖𝑖𝑟𝑟𝑓𝑓 + 𝑎𝑎
𝜎𝜎2 [(𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖)𝜏𝜏 − 2ln (1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔 )] +
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑

𝜎𝜎2 ( 1 − 𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓
) + 𝑖𝑖𝜙𝜙 ln(𝑆𝑆𝑡𝑡)} 

𝑔𝑔 =
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑑𝑑 

𝑑𝑑 = √(𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑏𝑏𝑗𝑗)2 − 𝜎𝜎2(2𝑢𝑢𝑗𝑗𝜙𝜙𝑖𝑖 − 𝜙𝜙2) 

             

𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝐾𝐾) = 1
2 + 1

𝜋𝜋 ∫ 𝑅𝑅𝑅𝑅 {
𝑅𝑅−𝑖𝑖𝑖𝑖 ln(𝐾𝐾)𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙)

𝑖𝑖𝑖𝑖 } 𝑑𝑑𝜙𝜙 
∞

0
 

𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙) = exp {𝑟𝑟𝜙𝜙𝑖𝑖𝑟𝑟𝑓𝑓 + 𝑎𝑎
𝜎𝜎2 [(𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖)𝜏𝜏 − 2ln (1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔 )] +
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑

𝜎𝜎2 ( 1 − 𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓
) + 𝑖𝑖𝜙𝜙 ln(𝑆𝑆𝑡𝑡)} 

𝑔𝑔 =
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑑𝑑 

𝑑𝑑 = √(𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑏𝑏𝑗𝑗)2 − 𝜎𝜎2(2𝑢𝑢𝑗𝑗𝜙𝜙𝑖𝑖 − 𝜙𝜙2) 

             

𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝐾𝐾) = 1
2 + 1

𝜋𝜋 ∫ 𝑅𝑅𝑅𝑅 {
𝑅𝑅−𝑖𝑖𝑖𝑖 ln(𝐾𝐾)𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙)

𝑖𝑖𝑖𝑖 } 𝑑𝑑𝜙𝜙 
∞

0
 

𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙) = exp {𝑟𝑟𝜙𝜙𝑖𝑖𝑟𝑟𝑓𝑓 + 𝑎𝑎
𝜎𝜎2 [(𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖)𝜏𝜏 − 2ln (1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔 )] +
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑

𝜎𝜎2 ( 1 − 𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓
) + 𝑖𝑖𝜙𝜙 ln(𝑆𝑆𝑡𝑡)} 

𝑔𝑔 =
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑑𝑑 

𝑑𝑑 = √(𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑏𝑏𝑗𝑗)2 − 𝜎𝜎2(2𝑢𝑢𝑗𝑗𝜙𝜙𝑖𝑖 − 𝜙𝜙2) 

𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝐾𝐾) = 1
2 + 1

𝜋𝜋 ∫ 𝑅𝑅𝑅𝑅 {
𝑅𝑅−𝑖𝑖𝑖𝑖 ln(𝐾𝐾)𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙)

𝑖𝑖𝑖𝑖 } 𝑑𝑑𝜙𝜙 
∞

0
 

𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙) = exp {𝑟𝑟𝜙𝜙𝑖𝑖𝑟𝑟𝑓𝑓 + 𝑎𝑎
𝜎𝜎2 [(𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖)𝜏𝜏 − 2ln (1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔 )] +
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑

𝜎𝜎2 ( 1 − 𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓
) + 𝑖𝑖𝜙𝜙 ln(𝑆𝑆𝑡𝑡)} 

𝑔𝑔 =
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑑𝑑 

𝑑𝑑 = √(𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑏𝑏𝑗𝑗)2 − 𝜎𝜎2(2𝑢𝑢𝑗𝑗𝜙𝜙𝑖𝑖 − 𝜙𝜙2) 

 

𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝐾𝐾) = 1
2 + 1

𝜋𝜋 ∫ 𝑅𝑅𝑅𝑅 {
𝑅𝑅−𝑖𝑖𝑖𝑖 ln(𝐾𝐾)𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙)

𝑖𝑖𝑖𝑖 } 𝑑𝑑𝜙𝜙 
∞

0
 

𝑓𝑓𝑗𝑗(𝑥𝑥, 𝑉𝑉𝑡𝑡, 𝑇𝑇, 𝜙𝜙) = exp {𝑟𝑟𝜙𝜙𝑖𝑖𝑟𝑟𝑓𝑓 + 𝑎𝑎
𝜎𝜎2 [(𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖)𝜏𝜏 − 2ln (1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔 )] +
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑

𝜎𝜎2 ( 1 − 𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓

1 − 𝑔𝑔𝑅𝑅𝑑𝑑𝑟𝑟𝑓𝑓
) + 𝑖𝑖𝜙𝜙 ln(𝑆𝑆𝑡𝑡)} 

𝑔𝑔 =
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 + 𝑑𝑑
𝑏𝑏𝑗𝑗 − 𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑑𝑑 

𝑑𝑑 = √(𝜌𝜌𝜎𝜎𝜙𝜙𝑖𝑖 − 𝑏𝑏𝑗𝑗)2 − 𝜎𝜎2(2𝑢𝑢𝑗𝑗𝜙𝜙𝑖𝑖 − 𝜙𝜙2)  

for j = 1,2 where:

u1 = 𝑢𝑢1 =
1
2 , u2 = − 𝑢𝑢1 =

1
2 , α = κθ, b1 = κ + λ − ρσ, b2 = κ + λ 

Formula 28 is not difficult to implement in practice. 
The only problem is to calculate the limit of the integral 
therein. This limit is often approximated by an adequate 
quadrature (Gauss-Legendre or Gauss-Lobatto), what 
can be done in many statistical software packages.

Practical implementation of the Heston model is 
done in two stages. First, we have to calibrate the model 
in order to find its parameters from equation (25), (26) 
and (27). Calibration can be done on the basis of call 
transactional prices observed in every one-hour inter-
val. We choose parameter values in such a way as to 
minimize the difference between market and theoretical 
prices. Next, we use formulas (28) and (29) to calculate 
theoretical prices.

The calibration of the Heston model can be con-
ducted in two ways – via global or local optimization. 
Global optimization guarantees that we find the true 
global minimum of our target function. The disadvan-
tage of this method is that it is time-consuming and 
the parameters obtained here tend to be very unstable. 
On the other hand, local optimization gives only local 
minima but it is very fast and the parameters derived in 
this way are stable.

In our study, the global optimization is used for 
the first period and its results are the starting point 
for the local optimization in the second period. Then, 
the further iterations of the local optimization are being 
performed, for which the starting point is set to the local 
minimum from the previous stage.

In the second stage, the parameters found previously 
are used to calculate the theoretical prices in the next 
hourly interval. The prices of call options are calculated 
according to the formulas (28) and (29), while put option 
prices are found on the basis of call-put parity:

Ct + Ke−rf (T − t) = Pt + St  (30)

where Ct and Pt are European style call and put prices, St 
is the price of basis instrument, rf is the risk-free rate, and 
finally, K is the strike price, and T is time to maturity for 
both call and put options.

The calibration of the Heston model in our study for 
the Japanese market has been done on the basis of an 
hourly interval. It means that in the time of calibration, 
we use transactional prices from the previous hourly 
interval, and then we use those results to price options 
for the current interval. The calibration of the Heston 
model was based on all the available transactional prices 
in one-hour interval.
Measuring option pricing error
To assess the accuracy option pricing models, we 
compare the option transactional prices with the the-
oretical prices obtained from each model. To measure 
the average pricing error, we use the median absolute 
percentage error (MdAPE). Since the distribution of 
errors is relatively strongly positively skewed, we claim 
that it is better to use the median rather than the mean 
value to express the average pricing error. The MdAPE 
statistic is defined as:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 {|𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖
𝑦𝑦𝑖𝑖

|}
𝑖𝑖=1

𝑁𝑁
  (31)

where yi and ŷi are, respectively, option transactional 
price and option theoretical price for the given time 
interval.

We also calculate the percentage of overprediction 
(OP) in order to see whether a given model on average 
over- or under predicts the transactional price of an 
option:

𝑂𝑂𝑂𝑂 = 1
𝑁𝑁∑𝑂𝑂𝑂𝑂𝑖𝑖

𝑁𝑁

𝑖𝑖=1
  (32)

where OPi = 1 if ŷi > yi and OPi = 0 if ŷi ≤ yi.
Both statistics were calculated for all the models, 

for different TTM and MR classes, and for both call and 
put options.
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2.4  Models’ description

 Thus, we study the properties of the following models:
• BHV – the Black model with historical volatility (σ as 

standard deviation, n = 63)
• BRV – the Black model with realized volatility (real-

ized volatility as an estimate of σ parameter; RV cal-
culated on the basis of observations with several dif-
ferent ∆ intervals and different values for parameter 
n applied in the process of averaging)

• BIV – the Black model with implied volatility 
(implied volatility as an estimate of σ; IV calcu-
lated for the previous observation, separately for 
each TTM and MR class, and for both call and put 
options, hence for 50 different groups)

• Heston – the Heston option pricing model
• GARCH – GARCH (1,1) option pricing model based 

on the Duan’s methodology.

Initially, we calculate the BRV models with four dif-
ferent ∆  values:  5,  10,  15  and  30  minutes.  Then,  we 
check the properties of averaged RVs with different 
values of parameter n in pricing models. We find, like 
Kokoszczyński  et al.  (2010a),  no  significant  differences 
between RVs with different ∆ parameter. On the other 
hand,  Sakowski  (2011),  after  a  detailed  analysis  of 
similar data  for WIG20  index options, but  for a  longer 
data span shows that BRV, BHV and BIV models have 
better properties (basing on MdAPE statistics) for 
parameter ∆ = 5 minutes compared with intervals of 
10,  15  and  30  minutes.  Additionally,  it  is  a  common 
approach in the literature to use observation intervals 
between 5 minutes and 15 minutes, since this consti-
tutes the good trade-off between the nonsynchronous 
bias and other microstructure biases (cf. Ait-Sahalia et al. 
2009). Therefore, we use the BRV model only for ∆ = 5m 
interval with different values of averaging parameter 
(n = 1, 2, 3, 5, 10, 21 and 63). Having analysed their prop-
erties, we decided to present only the best and the worst 
model from the family of BRV models: BRV5m (non-av-
eraged one), and BRV5m_6313. GARCH model has been 
estimated with the same ∆ interval and the Heston 
model has been calibrated on hourly intervals but it still 
enables us to calculate the theoretical prices for ∆ inter-
val equal to 5 minutes.

13 Our choice is confirmed by results in Sakowski (2011) and Koko-
szczyński et al. (2010a).

3  Data and the description of 
volatility processes

3.1  Data description

We use transactional data14 for Nikkei 225 index options, 
Nikkei 225 index and Nikkei 225 index futures, which 
have been provided by the Reuters company15. The data 
cover the period from 2 January, 2008 to 30 June, 2008. 
Transactional prices for Nikkei 225 index options and 
Nikkei 225 index are in the form of 5-minutes data and we 
use such data for further calculations. However, in order 
to calculate different volatility estimators, we transform 
5-minutes data into different frequencies. The risk-free 
interest rate is approximated by the LiborJPY3m interest 
rate, also converted into 5-minute intervals.

The market for Nikkei 225 index option started in 
this period at 1.00 CET and ended at 7.00 CET16. For that 
reason, we have 6745 observations (122 session days 
with 56 5-minutes intervals each17).

As a result, our data set for Nikkei 225 index options 
comprises  transactional prices  for  160  call  options and 
160 put options maturing in January, February, March, 
April, May, June and July 2008.18

14 Some papers that test alternative option pricing models and include 
the Black-Scholes model among models tested therein use instead of 
transactional data bid-ask quotes (midquotes), as they allow to avoid 
microstructural noise effects (Dennis and Mayhew 2009). Ait-Sahalia 
and Mykland (2009) state explicitly that quotes ‘contain substantially 
more information regarding the strategic behaviour of market makers’ 
and they ‘should be probably used at least for comparison purposes 
whenever possible’ (p. 592). On the other hand, Beygelman (2005) and 
Fung and Mok (2001) argue that midquote is not always a good proxy 
for the true value of an option. 
15 Thanks to the financial support of the government, we were able to 
buy all the necessary data (5 minutes intervals) from Reuters Datascope 
company.
16 In practice, the market session lasted from 1.00 CET to 3.00 CET, then 
there was a pause, and later session lasted from 4.30 CET to 7.00 CET. 
Therefore, we get 56 5-minutes intraday returns.
17 Some days, close to the most important national holidays, the mar-
ket session finished before 7.00 CET.
18 Maturity days of these options and their symbols for each call 
and put series are as follows: 11.01.2008 (call-A8, put-M8), 08.02.2008 
(call-B8, put-N8), 14.03.2008 (call-C8, put-O8), 11.04.2008 (call-D8, put-
P8), 09.05.2008 (call-E8, put-Q8), 13.06.2008 (call-F8, put-R8) i 11.07.2008 
(call-G8, put-S8).
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The results of our analysis will be presented with 
respect to 2 types of options, 5 classes of MR and 5 classes 
of TTM:
• 2 types of options (call and put)
• 5 classes of moneyness ratio, for call options: deep 

OTM  (0–0.85),  OTM  (0.85–0.95),  ATM  (0.95–1.05), 
ITM (1.05–1.15) and deep  ITM (1.15+), and  for put 
options in the opposite order19

• 5  classes  for  time  to  maturity:  [0–15  days], 
[16–30 days], [31–60 days], [61–90 days], [91+ days).

This categorization allows us to compare the different 
pricing models along several dimensions.

The number of transactional prices, theoretical prices 
and pricing errors are presented in Tab. 2 and Fig. 5.

3.2  The descriptive statistics for Nikkei 
225 futures time-series.

We begin our study with the basic analysis of the time 
series of returns of the basis instrument. Tab. 1 presents 
the descriptive statistics for 5-minute interval data. 

19 Moneyness ratio is usually calculated according to the  following 
formula:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚 = 𝑆𝑆
𝐾𝐾/𝑚𝑚𝑟𝑟𝑓𝑓𝑇𝑇 = 𝐹𝐹

𝐾𝐾 

where K is the option strike price, S is the price of underying, F is the fu-
tures price of underlying, rf is the risk-free rate and T is time to maturity.

They are calculated for two samples: with and without 
opening jump effects.20

Both samples have high kurtosis and are asymmet-
ric. The distribution for the full sample has negative 
skewness, while removing jump effects makes the dis-
tribution right skewed. Overall, both Jarque-Bera and 
Kolmogorov-Smirnov statistics indicate that returns 
in both samples are far from normal. Nevertheless, we 
observe interesting feature that – contrary to the data 
from the Polish market (Kokoszczyński et al., 2010b) – for 
adjusted sample skewness and kurtosis are larger when 
we consider their absolute values. In case of the Japa-
nese market, it is not the jump effect that is responsible 
for the non-normality of returns, but returns’ general 
features.

Fig. 1 and Fig. 2 additionally confirm this observa-
tion showing high negative and positive returns in both 
time series with and without jump effects. Formally, 
the lack of normality of the basis instrument means 
that the standard BSM model should not be applied 
for option pricing with these data. Accordingly, we 
transform this model varying its assumption about 
the nature of the volatility process. Moreover, we also 

20 By opening jump effects we mean returns between 7.00 CET and 
1.00 CET on the next day. Thus, sample without opening jump effects 
does not include observations with these returns. In case of the Japa-
nese market two returns were excluded: one overnight return and sec-
ond one including the return from the mid-session break.

Tab. 1. The descriptive statistics for Nikkei 225 index returns for samples with and without opening jump effects

sample with opening jump effects sample without opening and mid-session 
jump effects

N 6745 6504

Mean -0,000025394 -0,000014111

Median 0,000032644 0,000036116

Standard Deviation 0,0030907 0,0028429

Minimum -0,0319108 -0,0319108

Maximum 0,0216127 0,0216127

Kurtosis 10,4364219 12,7560437

Skewness -0,6227228 0,7206586

Normality tests

Kolmogorov-Smirnov Statistic 0,093349 0,086497

Jarque-Berra Statistic 30995,9195 44584,7971
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apply the Heston and GARCH option pricing models to 
the same data.

3.3  The description of volatility processes; 
historical, realized and implied.

We consider three different volatility measures: histori-
cal, realized and implied volatility for the Black option 
pricing model and – in addition to that – stochastic 
volatility and GARCH model. Obviously, the vola-

tility process assumed in pricing is one of important 
reasons for differences among theoretical option prices 
we compare.

In the case of the historical volatility estimator NΔ = 1 
for every ri,t (daily log returns) and Ci,t in formulas (5), 
(6) and (7). Moreover, we use the constant value of 
parameter n being equal to 63, because we want to reflect 
historical volatility from the last three trading months.

On the basis of similar studies for the Polish market 
(Kokoszczyński et al. 2010a, Kokoszczyński et al. 2010b), 
the realized volatility has finally been calculated on 

Fig. 1. Index returns with the opening jump effecta

a The returns and index prices cover the data span between 2 January, 2008 to 30 June, 2008.

Fig. 2. Index returns without the opening and mid-session jump effecta

a The 10-second returns between the closing price from each day and the opening price from the next day have been excluded. The same 
was done with the mid-session jump. The returns cover the data span from 2 January, 2008 to 30 June, 2008.
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the  basis  of  Δ  equal  to  5  minutes.  Therefore,  at  this 
stage, we limit our selection of volatility time series only 
to  the  RV  calculated  for  Δ  =  5  minutes,  with  averag-
ing parameter n = 5, 10, 21 and 63 days. Fig. 3 presents 

the realized volatility compared to historical volatility. 
The distinguishing fact is that the non-averaged RV time 
series (RV_5m) is much more volatile than the averaged 
RV or HV time series. Obviously, such a high volatil-

Fig. 3. Historical and realized volatility (5m, 5m_5, 5m_10, 5m_21, 5m_63)a

a The volatility time series cover the data period between 2nd January, 2008 and 30th June, 2008. Vertical lines represent end of month 
and additionally the day of 11th January, 8th February, 14th March, 11th April, 9th May and 13th June, when the option series expired.

Fig. 4. Implied volatility for ATM call optionsa

a The volatility time series cover the data period between 2nd January, 2008 and 30th June, 2008. IV are presented for 7 series of options. 
Vertical lines represent end of month and additionally the day of 11th January, 8th February, 14th March, 11th April, 9th May and 13th 
June, when the option series expired.
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ity of volatility can strongly influence the theoretical 
prices from the BRV model and their stability over time. 
One can thus expect that in periods of high volatility, 
the BRV model with the non-averaged RV estimator 
may produce high pricing errors.

On the other hand, the implied volatility time series 
exhibits substantially different trajectories than RV or 
HV time series. Fig. 4 presents how IV estimates (for 
ATM call options) evolve in time.21 Similar to Koko-
szczyński et al. (2010), we observe that for the short TTM 
(5–10  days),  the  IV  tends  to  increase  with  shortening 
of the TTM. Contrary to the Polish market for the TTM 
lower than 5 days, we do not observe explosion of the IV 
and  it  does  not  reach  the  level  of  over  200%  (annual-
ized). This happens mostly for the call and put (deep) 
OTM and ATM options. However, jump of the IV to 
70% can be the reason of big mispricing of options with 
the low TTM. For that reason, some researchers often 
exclude from comparison options with the short TTM 
and market prices lower than 5–10. However, we have 
consciously decided to conduct this research on the full 
sample, believing that such an approach would allow us 
to better answer the question what kind of observation 
should be treated as outliers.

4  Market liquidity

Liquidity constraints are typical features of an emerging 
derivatives market and they put severe limits for conduct-
ing such a study as we have done for the Polish market. 
To make our comparisons of both markets (WIG20 and 
Nikkei 225) as comprehensive as possible, we have also 
decided to present a detailed discussion of developed 
market liquidity on the example of the Nikkei 225 index 
option market with respect to (1) the number of transac-
tional prices available in the sample, (2) the volume and 
(3) the turnover of option transactions.

The number of transactional prices is shown in Tab. 2 
and Fig. 5. Their distribution suggests that the activity of 
market participants (measured by the number of single 
trades and not by their volume) concentrates on call 
ATM, OTM and deep OTM and put deep OTM option 
with the TTM between 16 and 90 days.

On the other hand, observing the distribution of 
volume for call options, presented in Fig. 6 (left panel), 
we notice that the highest volume is observed for the MR 

21 IV estimates for ATM put options show similar pattern.

equal  to  ATM  and  OTM  for  the  TTM  up  to  60  days. 
The lowest volume we see for the low TTM and the MR 
equal to ITM, deep ITM, and deep OTM. This suggests 
that investors rarely trade highly valued options (deep 
ITM and ITM) or options with the long TTM.

The distribution of volume for put options (Fig. 6, 
right panel) is very similar. The only difference is that 
the volume is also high for deep OTM options with 
the TTM less than 60 days. However, this is mostly due 
to the fact that put options are used as an insurance 
against sharp downward movement of the basis instru-
ment.22 Generally, we could say that the volume distri-
bution for call and put options is very similar and that 
investors focus their trades on low-valued options with 
the short TTM.

22 One buys the right to sell the basis instrument in the case of an ex-
treme financial catastrophe, e.g., financial crash, for a relatively low cost 
(put option premium).

Tab. 2. Number of theoretical premiums for different classes of 
MR and TTM for BRV model*

option moneyness 0–15 
days

16–30 
days

31–60 
days

61–90 
days

91+ 
days

Total

CALL deep OTM 372 4327 27089 23799 10494 66081

OTM 6501 11635 22572 19567 8959 69234

ATM 8199 9681 17385 12141 5368 52774

ITM 3880 4510 5373 1484 761 16008

deep ITM 1205 1935 3032 1044 1335 8551

total CALL 20157 32088 75451 58035 26917 212648

PUT deep OTM 6964 20580 44831 31225 7768  111368

OTM 6109 8142 15466 12674 5631 48022

ATM 8028 9669 17014 12001 6413 53125

ITM 4278 4826 7427 1790 1096 19417

deep ITM 2411 3002 3098 1161 1962 11634

total PUT 27790 46219 87836 58851 22870 243566

total 
CALL 
and 
PUT

47947 78307 163287 116886 49787 456214

*456 thousand for BIV, Heston and GARCH(1,1) model and 
445 thousand for BHV



31  CEEJ 4(51) • 2017 • pp. 18−39 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0010

Fig. 7 addresses the liquidity issue from another 
perspective by focusing on the turnover volume that 
increases the importance of traded options’ value. We 
observe significant shift from deep OTM to ATM and 
then to OTM options. It obviously means that most 
investors involved in the option trades concentrate in 
the ATM-OTM range. The same results are observed 
for call and put options with only slightly higher turno-
ver volume for put options. However, this latter feature 

can be tied to the behaviour of the basis instrument in 
the period we study.23

The most important outcome from the liquidity anal-
ysis is that we can indicate where the volume of options 
concentrates. We notice that after dividing the set of 
options into different MR and TTM classes, we can dis-
tinguish options with the low TTM, which are ATM, 

23 We observe sharp downward movement of Nikkei 225 index in 
the time of research.

Fig. 5. The number of theoretical values for call and put options with respect to TTM i MR ratioa,b

 

a call options       a put options

Fig. 6. The distribution of volume for call and put optionsa,b

 

a call options       a put options
b the volume for both call and put options quoted in the period between 2nd January, 2008 and 30th June, 2008.
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OTM or ITM that cumulate more than 90% of the total 
volume, both in case of call and put options. Similar 
situation has been observed in the case of the Polish 
market. Finally, it is worth noticing that the accumula-
tion of volume in the given class of the MR and the TTM 
is partly conditional on the availability of options with 
the specified MR or TTM ratio.

5  Results

We divide this section into two subsections containing 
results presented separately for call and put options 
(section 5.1), and the comparison of joint results with 
respect to different dimension (section 5.2). This enables 
us to present a multidimensional comparative analysis 
of option pricing models.

5.1  Error statistics distribution

For all the available transactional and theoretical prices, 
we calculate two pricing error measures (MdAPE and 
OP), separately for six different pricing models (1. Heston, 
2. GARCH(1,1), 3. BRV5m, 4. BRV5m_63, 5. BHV, and 6. 
BIV). The discussion of our results is based on two-di-
mensional charts containing five panels (Fig. 8 to 11). 
Each panel presents results for the separate MR class. 
Values of statistics have been joined with dashed or 
solid lines for a given TTM class.

Fig. 8 presents MdAPE statistics for call options. We 
can observe that the Black model with the implied vol-
atility estimator (BIV) has the smallest average pricing 
errors for the majority of option classes. Slightly higher 
errors we got for the Heston model, but on the other 
hand, it is the best model for ATM options with the TTM 
less  than  60  days.  In  the  next  place,  depending  on 
the given option class, we can rank BRV5m_63, BRV5m 
and BHV model (despite relatively large errors for deep 
OTM for the latter one). The worst results are observed 
for the GARCH(1,1) model with very large pricing errors 
for OTM options with time to maturity below 15 days.

Moreover, for all the models, we can observe dis-
tinctive relationship between average pricing errors 
and MR and TTM classes. Values of MdAPE statistics 
decline when we go from deep OTM through deep ITM 
options. The influence of TTM classes looks a little bit 
different. For deep OTM and OTM options, pricing 
errors are higher for short times to maturity, whereas for 
ITM and deep ITM options, we observe higher errors for 
longer times to maturity. Smallest differences between 
all the models, and simultaneously, most precise theo-
retical premiums we obtain for deep ITM options with 
time to maturity below 15 days.

Fig. 9 – with OP values for call options – indicates 
that the BIV model (number 6) is the best one. It is char-
acterised by almost the same level of over- and underpre-
diction (the value of OP is approximately equal to 0.5). 
Results for other models differ. The second best models 
according to this metric are the Heston model (number 1) 

Fig. 7. The volume of turnover for call and put optionsa

a call options       a put options
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Fig. 8. MdAPE statistics for call options with respect to MR and TTM classes

Fig. 9. OP statistics for call options with respect to MR and TTM classes

Fig. 10. MdAPE statistics for put options with respect to MR and TTM classes
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and the BHV model. On average, GARCH, BRV5m and 
BRV5m_63 models underpredict the market values of 
options, especially for ATM, ITM and deep ITM options. 
Nevertheless, we can see that results – with the excep-
tion of the BIV model – vary strongly with changes in 
the TTM.

MdAPE statistics for put options are shown in 
Fig. 10. The results are similar to those for call options. 
Once again we see that the best model is BIV. The Heston 
model performs only slightly worse. On the next 
places, we can rank BHV, BRV5m_63 and BRV5m. 
The highest average pricing errors are produced by 
the GARCH model.

Moreover, we can observe the same relationship 
between average pricing errors and MR and TTM classes 
as previously described for call options. Errors are sig-
nificantly smaller for the higher-valued options (ITM 
and deep ITM), while the effect of TTM classes depends 
on the MR class. For deep OTM and OTM options, we 
get smaller pricing errors for longer times to maturity, 
whereas for ITM and deep ITM options, the errors are 
smaller for shorter times to maturity.

Fig. 11 with OP statistics for put options confirms 
the ranking of models derived from results for call 
options. The BIV model is the best one, then the Heston 
model is the second one and as the third one, we have 
the BHV model. The results for models other than the BIV 
depend strongly on TTM classes. We also observe strong 
underestimation of market prices for all the models with 
the only exception of the BIV model.

Finally, it has to be emphasized that our results are 
based on all the available theoretical prices of the ana-
lysed options. We did not remove any observations 

from the original sample. In order to omit the problem 
of possible outliers among the pricing errors, we used 
median (absolute percentage) error, which is a robust 
measure to the possible large deviations of errors from 
their average value. We argue that this approach, as 
opposed to removing from the sample problematic 
observations (low-valued options or options with few 
days to maturity), is a better solution of the problem of 
outliers, since it allows analysing models’ properties in 
all the option classes.

5.2  Multidimensional comparisons of 
results.

In this closing subsection, we present our conclusions in 
a more formal way. Fig. 12 presents the frequency of best 
pricing for all the tested models in 5 diagrams for each 
moneyness ratio for call and put options together. Our 
initial conclusions from section 5.1 are confirmed here by 
this aggregated approach. BIV is clearly the best model, 
the Heston model is the next one, and the third one is 
BHV. Additionally, we see that the Heston model seems 
to behave much better for OTM, and especially for ATM 
options, while the BIV model is the worst model for 
ATM and then for ITM options. Finally, we noticed that 
the BRV and the GARCH models are the worst models 
for every MR.

Fig. 13 shows next the frequency of best pricing for 
all the tested models, but for each TTM class for call and 
put together. The BIV model is – as expected – the best 
one, and the Heston model is ranked as the second 
one, the BHV model follows. Additionally, we see that 

Fig. 11. OP statistics for put options with respect to MR and TTM classes
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Fig. 12. The frequency of the best option pricing for Nikkei 225 index options with respect to MR based on MdAPE error statistica

a The charts present the data for call and put options together. On each panel, the order of the models is the same: we start with 
the Heston model at the top and going clockwise end up with the BIV model.

Fig. 13. The frequency of the best option pricing for Nikkei 225 index options with respect to TTM on MdAPE error statistica

a The charts present the data for call and put options together. On each panel, the order of the models is the same: we start with 
the Heston model at the top and going clockwise end up with the BIV model.
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the BIV model gains on efficiency, while the Heston 
model worsens its performance when we go from 
the lowest TTM to the highest one. Other models do not 
change their performance with respect to the TTM class.

The final Fig. 14 that presents the frequency of best 
pricing for all the tested models with respect to the type 
of options obviously does not change the model ranking. 
However, we see a very interesting pattern concerning 
the two best models. The BIV model performs much 
better for put options, while the Heston model is better 
for call options. Here again we do not observe any sig-
nificant differences for other models.

6  Conclusions and further 
research.

In this study, we present a detailed analysis of option 
pricing models’ performance using 5-minutes transac-
tional data for the Japanese Nikkei 225 index options. 
We compare 6 different types of option pricing models: 
the Black model with different assumptions about 
the volatility process (BRV – two cases, BHV, BIV), 
the Heston model and the GARCH model. Then, we 
present detailed error statistics describing how efficient 
in option pricing are the models we test. Furthermore, 
we focus on the analysis of liquidity for option market 
in order to better understand different behaviours of 

options within various classes of the TTM and the MR. 
Here, we try to summarize our conclusions from this 
study and we formulate some thoughts concerning 
further research.

First of all, when we consider the performance 
of models we have tested, the model ranking, from 
the most efficient to the least efficient one, is as follows: 
BIV, Heston, BHV, BRV5m_63, BRV5, and GARCH(1,1). 
The BIV model comes out as the best in majority of 
option classes. The model of Heston occurred to be 
only slightly worse. Next places, with similar results, 
belong to the Black model with historical volatility and 
the Black model with realized volatility averaged across 
last 63 trading days. Average pricing errors for the Black 
model with realized volatility (not averaged) were 
higher, due to the more volatile estimates of RV com-
pared to HV estimates. We obtained the worst results 
for the GARCH(1,1) model. Generally, these results 
confirm the previous findings for the Polish and Bra-
zilian  emerging option markets  (Kokoszczyński  2010a, 
Sakowski 2011). The only exception is the Heston model, 
which performed significantly worse for the less devel-
oped markets. The probable reason is that calibration of 
the Heston model is strongly dependent on the number 
of options with different maturities. Nevertheless, to 
some extent, we can claim that this model ranking is not 
only a feature of an individual market, but can also be 
regarded as robust to the level of development, liquidity 
or various other market characteristics.

Fig. 14. The frequency of the best option pricing for Nikkei 225 index options with respect to the type of option on MdAPE 
error statistica

a On each panel, the order of the models is the same: we start with the Heston model at the top and going clockwise end up with 
the BIV model.
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Secondly, for both call and put options, we observe 
the clear relation between average pricing errors and 
option moneyness: high error values for deep OTM 
options and the best fit for deep ITM options. We can 
explain this pattern by noting that highly valued options 
(ITM or deep ITM) are relatively better priced because 
of the more active participation of market makers and 
institutional investors in this market segment, where 
we do not observe strong under- or overreaction to new 
information as it happens with individual investors. 
The concentration of liquidity for low-valued options 
with short maturities may mean high error for options 
that are traded more frequently. Such error distribution 
can explain higher interest of speculative investors for 
deep OTM and OTM options, where information noise, 
responsible for larger departure of transactional prices 
from the theoretical ones, is of greater importance. 
All these outcomes confirm our previous results for 
the Polish WIG20 index option market (Kokoszczyński 
2010a).

Thirdly, focusing on parameter n (RV averaging 
parameter) for BRV models, we observe that much lower 
error values are obtained for n = 63 than in the case of 
the non-averaged RV, what confirms our initial hypoth-
esis that the non-averaged RV estimator (Fig. 3) is rather 
a poor choice considering the efficiency of option pricing 
model. This is the confirmation of results presented in 
the literature on the efficiency and accuracy of various 
volatility estimators (Ślepaczuk and Zakrzewski 2009).

Fourthly, we would like to focus on two models with 
the most time-consuming estimation process (the Heston 
model and GARCH models). Results we have presented 
earlier make us doubt whether there is any gain from 
using them, especially in the case of the GARCH model, 
which comes out as the worst one, when better models 
are formally much less complicated, and additionally, 
less time-consuming in the process of estimation.

Analysing the liquidity issues, we observe several 
interesting features of the Japanese index option market 
data. First of all, the volume of calls and puts concen-
trates in ATM, OTM and deep OTM options, with hardly 
any volume noticed for deep ITM and ITM options. Sec-
ondly, the turnover volume peaks around ATM and ITM 
options, indicating that the highest (in terms of transac-
tion value) liquidity is observed for ATM options, and 
then for ITM options. Thirdly, the liquidity – however 
measured – is significantly higher for put options. Nev-
ertheless, we are aware of the fact that the latter conclu-
sion could result from the sharp downward movement 

of the market in the time we study and the high demand 
for put options for hedging purposes.

This final observation shows clearly how important 
are the liquidity issues for patterns we get while com-
paring performance of various option pricing models. 
They should be certainly the subject of further studies. 
Our intention is thus to conduct a similar study for 
other markets.

There are suggestions in the literature that not-
withstanding unrealistic assumptions of the BSM or 
the Black model, they can produce results of the same 
quality than much more sophisticated models do. Our 
paper constitutes an argument supporting this opinion, 
because superiority of this model is shown for majority 
of option classes.

References
[1] Ait-Sahalia, Y., P.A. Mykland, 2009, Estimating Volatility in 

the Presence of Market Microstructure Noise: A Review of 
the Theory and Practical Considerations, in: T.G. Andersen, 
R.A. Davis, J.-P. Kreiss, T. Mikosch (eds.), Handbook of 
Financial Time Series, Springer, Berlin.

[2] Amin, K., R. Jarrow, 1992, Pricing options on risky assets in 
a stochastic interest rate economy, Mathematical Finance 2, 
217–237.

[3] An, Y., W.Suo, 2009, An Empirical Comparison of Option 
Pricing Models in Hedging Exotic Options, Financial 
Management, 38, 889–914.

[4] Andersen, T.G., P.Frederiksen, A.D.Staal, 2007, 
The information content of realized volatility forecasts, 
mimeo.

[5] Bates, D., 1995, Testing Option Pricing Models, NBER 
Working Paper No. 5129.

[6] Bates, D.S., 2003, Empirical option pricing: a retrospection, 
Journal of Econometrics, 16, 387–404.

[7] Beygelman, R., 2005, Bid-Ask Spreads and Asymmetry of 
Option Prices, Goethe University, Frankfurt, mimeo.

[8] Black F., 1976, The pricing of commodity contracts, Journal of 
Financial Economics, 3, 167–179.

[9] Black, F., Scholes, M., 1973, The pricing of options and 
corporate liabilities, Journal of Political Economy, 81, 
637–659.

[10] Bollerslev, T., R. Chou, K. Kroner, 1992, ARCH modelling 
in finance: A review of the theory and empirical evidence. 
Journal of Econometrics, 52, 5–59.

[11] Bollerslev, T., R. Engle, D. Nelson, 1994, ARCH model; w: R. 
Engle, D. McFadden (eds.), Handbook of Econometrics, Vol. 
IV, Elsevier, Amsterdam.

[12] Bollerslev, T., R.F. Engle, J.M. Wooldridge, 1988, A Capital 
Asset Pricing Model with Time Varying Covariances, Journal 
of Political Economy, 96, 116–131.



R. Kokoszczyński, P. Sakowski, R. Ślepaczuk/ Which Option Pricing Model Is the Best?  38

[13] Brandt, M.W., T. Wu, 2002, Cross-sectional tests of 
deterministic volatility functions, Journal of Empirical 
Finance, 9, 525–550.

[14] Broadie, M., J.B. Detemple, 2004, Option Pricing: Valuation 
Models and Applications, Management Science, 50, 
1145–1177.

[15] Campbell, J., L. Hentschel, 1992, No news is good news: An 
asymmetric model of changing volatility in stock returns, 
Journal of Financial Economics, 31, 281–318.

[16] Christoffersen, P., K. Jacobs, 2004, The Importance of 
the Loss Function in Option Valuation, Journal of Financial 
Economics, 6, 213–234.

[17] Corrado, C., S. Tie, 1996, Skewness and kurtosis in S&P 500 
index returns implied by option prices, Journal of Financial 
Research, 19, 175–192.

[18] Dennis, P., S. Mayhew, 2009, Microstructural biases 
in empirical tests of option pricing models, Review of 
Derivatives Research, 12, 169–191.

[19] Derman, E., I. Kani, 1994, Riding on a smile, RISK, 7, 32–39.
[20] Duan, J.-C., 1995, The GARCH option pricing model, 

Mathematical Finance, 5, 13–32.
[21] Duan, J.-C., P. Ritchken, Z. Sun, 2004, Jump starting GARCH: 

Pricing and hedging options with jumps in returns and 
volatilities, manuscript, University of Toronto.

[22] Dupire, B., 1994, Pricing with a smile, RISK 7, 18–20.
[23] Ferreira, E., M.Gago, A.Leon, G. Rubio, 2005, An empirical 

comparison of the performance of alternative option pricing 
model, Investigaciones Economicas, 29, 483–523.

[24] Fiszeder, P., 2008, Pricing the WIG20 Index Options Using 
GARCH Models, a paper presented at the conference 
Forecasting Financial Markets and Economic 
Decision-making, Łódź, 14–17 May 2008.

[25] French, K., G. W. Schwert, R. Stambaugh, 1987, Expected 
stock returns and volatility. Journal of Financial Economics, 
19, 3–30.

[26] Fung, J.K.W., H.M.K. Mok, 2001, Index Options-Futures 
Arbitrage: A Comparative Study with Bid-Ask and 
Transaction Data, BRC Papers on Financial Derivatives and 
Investment Strategies, Hong Kong Baptist University.

[27] Garcia, R., E. Renault, 1998, A note on hedging in ARCH and 
stochastic volatility option pricing models, Mathematical 
Finance, 8, 153–161.

[28] Garcia, R., E. Ghysels, E. Renault, 2010, The econometrics of 
option pricing, in: Y. Ait-Sahalia, L. Hansen (eds.), Handbook 
of financial econometrics, North Holland, Oxford and 
Amsterdam.

[29] Glosten, L., R. Jagannathan, D. Runkle, 1993, On the relation 
between the expected value and the volatility of the nominal 
excess return on stocks, Journal of Finance, 8, 1779–1801.

[30] Han, C., 2008, The Comparisons between Three Option 
Pricing Models and Black-Scholes Formula in Pricing 
Performance and Trading Strategy: Evidence from 
the FTSE 100 Options, Master Thesis, National Chung 
Cheng University.

[31] Hansen, P., and Lunde, A., 2004, A Forecast Comparison 
of Volatility Models: Does Anything Beat a GARCH(1,1) 
Model?, Journal of Applied Econometrics, 20,873–889.

[32] Heston, S.L., 1993, A Closed-Form Solution for Options with 
Stochastic Volatility with Applications to Bond and Currency 
Options, Review of Financial Studies, 6, 327–343.

[33] Hull, J., A. White, 1987, The Pricing of Options with 
Stochastic Volatilities, Journal of Finance, 42, 281–300.

[34]  Iaquinta, G., 2007, The analysis of the perpetual option 
markets: Theory and evidence, Bergamo University, 
unpublished Ph.D. thesis.

[35]  Jarrow, R., A. Rudd, 1982, Approximate option valuation 
for arbitrary stochastic processes, Journal of Financial 
Economics, 10, 347–369.

[36] Kanoh, S., A. Takeuchi, 2006, An Analysis of Option Pricing 
in the Japanese Market, Discussion Paper Series No. 145, 
Hitotsubashi University.

[37] Kokoszczyński, R., N. Nehrebecka, P. Sakowski, P. 
Strawiński, R. Ślepaczuk, 2010a, Option Pricing Models with 
HF Data – a Comparative Study. The Properties of the Black 
Model with Different Volatility Measures, University of 
Warsaw, Faculty of Economic Sciences, Working Papers 
3/2010.

[38] Kokoszczyński, R., P. Sakowski, R. Ślepaczuk, 2010b, 
Midquotes or Transactional Data? The Comparison of 
Black Model on HF Data, University of Warsaw, Faculty of 
Economic Sciences,Working Papers 15/2010.

[39] Li, S., 2006, The Arbitrage Efficiency of the Nikkei 225 
Options Market: A Put-Call Parity Analysis, Monetary and 
Economic Studies (Bank of Japan), November, 33–54.

[40] Lim, Guay, Gael Martin and Vance Martin, 2005, Parametric 
pricing of higher order moments in S&P options, Journal of 
Applied Econometrics, 20, 377–404.

[41] Maheu, J., T. McCurdy, 2004, News arrival, jump dynamics 
and volatility components for individual stock returns, 
Journal of Finance, 59, 755–779.

[42] Mitra, S., 2009, A Review of Volatility and Option Pricing, 
arXiv:0904.1292v1.

[43] Mitsui, H., K. Satoyoshi, 2010, Empirical Study of Nikkei 225 
Option with Markov Switching GARCH Model, Asia-Pacific 
Financial Markets, On-Line First.

[44] Mixon, S., 2009, Option markets and implied volatility: Past 
versus present, Journal of Financial Economics, 94, 171–191.

[45] Pagan, A., G. W. Schwert, 1990, Alternative models for 
conditional stock volatility, Journal of Econometrics, 45, 
267–290.

[46] Raj, M., D.C. Thurston, 1998, Transactions data examination 
of the effectiveness of the Black model for pricing options 
on Nikkei index futures, Journal of Financial and Strategic 
Decisions, 11, 37–45.

[47] Ritchken, P., R. Trevor, 1999, Pricing options under 
generalized GARCH and stochastic volatility processes, 
Journal of Finance, 54, 377–402.

[48] Rubinstein, M., 1985, Nonparametric Tests of Alternative 
Option Pricing Models Using All Reported Trades and 
Quotes on the 30 Most Active CBOE Option Classes from 
August 23, 1976 through August 31, 1978, Journal of Finance, 
40, 455–480.

[49] Rubinstein, Mark, 1998, Edgeworth binominal trees, Journal 
of Derivatives, 5, 20–27.



39  CEEJ 4(51) • 2017 • pp. 18−39 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0010

[50] Sakowski P., 2011, Wycena opcji indeksowych na danych 
wysokiej częstotliwości. Analiza porównawcza (Index option 
pricing using high-frequency data. A comparative analysis), 
PhD thesis, University of Warsaw, Faculty of Economic 
Sciences.

[51] Stein, E., J. Stein, 1991, Stock Price Distributions with 
Stochastic Volatility: An Analytic Approach, Review of 
Financial Studies, IV, 727–752.

[52] Ślepaczuk R., G.Zakrzewski, 2009, High-frequency and 
model-free volatility estimators, University of Warsaw, 
Faculty of Economic Sciences, Working Papers 13/2009.

[53] Tsiaras, L., 2009, The Forecast Performance of Competing 
Implied Volatility Measures: The Case of Individual Stocks, 
Aarhus University, mimeo.

[54] Yao, J., Y. Li, C.L. Tan, 2000, Option price forecasting using 
neural networks, Omega, 28, 455–466.

[55] Wei, J.Z., 1995, Empirical Tests of the Pricing of Nikkei Put 
Warrants, The Financial Review, 30, 211–241.

[56] Zivot E., 2008, Practical issues in the analysis of univariate 
GARCH models, University of Washington working papers: 
http://faculty.washington.edu/ezivot/research/practical-
garchfinal.pdf.


