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1 Introduction 

 
The meshfree localized Petrov-Galerkin method showed to be successful numerical simulation 

method for various physical phenomena. The element-free Galerkin method (EFG) [1] was the first of 
meshfree variants applied for mechanical simulations of solid materials. This success of EFG 
becomes attractive to researchers, from different fields, recognizing the potential of the meshfree 
simulations and adapting it to various phenomena, e.g. fluid and groundwater flow [2], material 
plasticity problems [3], showing its ability to describe a complex geometry [1] and, more recently, for 
numerical analysis in geotechnical engineering [4] and [5]. 

MLPG uses spatial discretization scheme based on a computational area represented by a 
scattered set of nodes covering the computational area and its boundary. The discretization nodes 
maintain its original position in space, or they can change their position in space to avoid any improper 
deformation of the discretization nodes distribution after each loading step. The mentioned approach 
removes the disadvantage of the finite element method (FEM) for which the improper mesh element 
shapes causes numerical problems. This paper shows the results obtained using the computer code 
that implements an MLPG framework, and the results are validated against the FEM and limit 
equilibrium solutions for the geotechnical problem of slope stability. 

The second chapter presents the theoretical aspects and requirements of the meshfree 
formulation. This follows the standard FEM formulation (MLPG represents a generalization of FEM in 
some way), thereby describing the similar theoretical aspects between MLPG and FEM. Particular 
implementation details are then compared for the situations, where a different approach needs to be 
used for MLPG. The subsequent section focuses on a simple homogeneous slope stability example to 
compare the presented meshfree framework results for slope stability, with the results obtained from a 
FEM (in-house code) and LEM (GeoStudio 2007) code. 

 
 
 

Abstract 
 
The article focuses on the use of the meshfree numerical method in 
the field of slope stability computations. There are many meshfree 
implementations of numerical methods. The article shows the results 
obtained using the meshfree localized Petrov-Galerkin method 
(MLPG) – localized weak-form of the equilibrium equations with an 
often used elastoplastic material model based on Mohr-Coulomb 
(MC) yield criterion. The most important aspect of MLPG is that the 
discretization process uses a set of nodes instead of elements. Node 
position within the computational domain is not restricted by any 
prescribed relationship. The shape functions are constructed using 
just the set of nodes present in the simple shaped domain of 
influence. The benchmark slope stability numerical model was 
performed using the developed meshfree computer code and 
compared with conventional finite element (FEM) and limit equilibrium 
(LEM) codes. The results showed the ability of the implemented 
theoretical preliminaries to solve the geotechnical stability problems. 
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2 The weak formulation of the equilibrium equations 
 

The MLPG formulation is not based on prescribed elements, as the finite element formulation. 
The MLPG adopts the more general concept of support domain, geometrically simple element that 
gathers all the nodes it contains into some form of “virtual” element. The governing equation is used in 
the weighted residual form rather than the global energy principle to create the global equation 
system. The compatibility requirements for the shape functions used in MLPG are restricted only to the 
area of the quadrature domain. Using another point of view, the localized meshfree method only 
requires the local compatibility of shape functions. The radial basis functions (RBF) are one of the 
widely used alternatives to constructing the shape function. One of the main advantages of RBF 
functions is their Kronecker delta function property that makes the imposition of essential boundary 
condition straightforward.  
 
2.1 MLPG formulation of the governing equations 
 

The general weighted residual form defined over quadrature domain Ωq bounded by Γq has the 
following matrix form [6] 
 

II fuK = ,                                                                                       (1) 
 
where KI is the matrix called nodal stiffness matrix for the I-th field node, which is computed using the 
following formula 
 

∫∫ ∫
ΓΩ Γ

Γ−Γ−Ω=
quq qt

ddd IIII nDBWnDBWDBVK TTT ,                                               (2) 

 
where, Γqt and Γqu represents the part of the local quadrature domain boundary with prescribed natural 
and essential boundary condition respectively. The fI is a nodal force vector with contribution from the 
body forces applied in the model domain, and the tractions applied on the natural boundary (Γqt) 
 

∫∫
ΓΩ

Γ+Ω=
qtq

dd III tWbWf TT .                                                                         (3) 

 
The matrices W and V in the equations (2) and (3) represents the matrix of the weight function 

and weight function derivatives evaluated over the quadrature domain [6]. In equation (2) D represents 
the matrix of elastic constants, B is the matrix containing the spatial derivatives of displacement field, 
n is a vector representing boundary normal, t is the boundary traction and b represents the body 
force. The weight function W used in this study represents the cubic spline and is defined according to 
[6], as follows 
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where dsx and dsy is the 2D dimension of the integration area used to evaluate governing equation. 
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The global characteristic linear equation system is not symmetric, which makes the computation 
more expensive compared to standard FEM [6] solvers. Numerical simulations presented, in this 
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article uses the Bi-Conjugate Gradient stabilized (BiCGStab) iterative solver to solve the global 
equation system [7]. Because the deformation analysis of the Mohr-Coulomb material is nonlinear, the 
numerical code needs some algorithm to deal with nonlinearities. The generation of the body forces 
caused by plastic failure combined with the Newton-Raphson method can’t be implemented 
straightforwardly as in FEM. To overcome this complication, the load is divided into small sub-steps 
which are applied at small increments at each pseudo-time step, having the change of constitutive 
matrix of each node at failure in mind. If there is any node at which the deformation overcome the 
prescribed tolerance the whole structure is assumed to be collapsing. There is no iterative procedure 
as in conventional FEM codes, but the global stiffness matrix has to be altered at node failure for each 
pseudo-time step, using the elastic-plastic constitutive matrix defined in section 2.2.  
 
2.2 Mohr-Coulomb material equations 
 

The procedures for conventional nonlinear material analysis start using the incremental 
constitutive relation as follows [8]: 
 

εDσ epdd =
,                                                                           (7) 

 
where Dep is tangential material constants matrix. In this article, the Mohr-Coulomb yield criterion was 
implemented in the MLPG because it is the first choice for almost every stability or failure simulation in 
geotechnical engineering.  
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where c and φ are the material strength parameters. In the field of soil strength these two parameters 
represent the cohesion and internal friction angle respectively. The other values used in equation (8) 
σm, σ , θ are the stress tensor invariants used to decouple the mean and deviatoric part of the stress. 
Because the simulations presented in this article are focused on the stability evaluation the associated 
plasticity is adopted in the material model implementation so the plastic potential is the same as yield 
function. 
 
 
3 Shape functions construction 
 

The shape functions in standard FEM implementation is based on polynomials defined over a 
relatively simple element. The number of points used in the element is known in advance and so is the 
order of the polynomial used for interpolation. Because the number of nodes in the support domain is 
not guaranteed the using of polynomials in meshfree is complicated and depends not only on the node 
count but also on the node distribution [6]. To remove the mentioned difficulties, the radial basis 
functions (RBF) is one of the best solutions [6]. There are various types of radial functions such as 
multi-quadratic (MQ) or thin-plate spline (TPS) that can be used as a base function. The thin-plate 
spline is radial basis function [2] defined as a fundamental solution for the biharmonic equation and for 
2D it is defined as 
 

( ) ( )iii rrR log2=X ,                                                                          (9) 

 
where ri is the distance between the response node (X) and the source node i(Xi) defined simply as 
the 2d norm  
 

22 )()( iii yyxxr −+−= .                                                           (10) 

 
The TPS kernel function has a weak singularity as the response node approaches the source 

node [6], the singularity can be avoided by the simple limit procedure. The approximation of the 
solution using the RBF kernels augmented with polynomials can be written as 
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where Ri(X) is the radial basis function (RBF), n is the number of RBFs which depends on the number 
of nodes in the support domain, pj(X) is polynomial, m is an order of augmenting polynomial, ai and bj 
are interpolation coefficients. For more details, please see [2] and [6].  
 
 
4 Meshfree numerical solution of the slope stability 
 

The analyzed problem is a homogeneous slope of soil material, described using nonlinear MC 
model, loaded by self-weight. The stability of the slope is described by the scalar quantity describing 
the ratio of active and passive forces - a factor of safety (FS). The FS evaluation from the results of 
numerical simulation is not so straight forward as in the calculations performed using limit equilibrium 
methods. To find the factor of safety many calculations have to be performed with change (or 
reduction) of the strength parameters by the scalar valued strength reduction factor (SRF). The SRF 
factor equals to FS for the value at which there is a transition from stable to unstable state.   

Gravity loads are generated using the global RBF shape functions and applied to the slope in 
small (difference) increments. The loading is applied in small steps while no failure occurs. At failure, 
the overall loading is compared to the model (slope) gravity loading and its ratio represents FS. 
 

Table1: Factors of safety (FS) obtained using compared methods. 

Computational method The factor of safety (FS) 

FEM – In-house code 1.57 

LEM – Jambu (GeoStudio 2007) 1.62 

Meshfree – MLPG with RBF 1.52 

 
The boundary conditions on the left and right vertical boundaries are represented by fixed zero 

movements in the horizontal dimension and no movement at the model basement. Fig.1 shows the 
nodal distribution and displacement field vectors numerical stability simulation of a homogeneous 2:1 
slope with the Mohr-Coulomb material model strength parameters φ = 20° and c = 15 kN/m2. The 
gravitational load of slope is driven by the volumetric weight γ = 20 kN/m3. The elastic parameters are 
given nominal values of E = 5×104 kPa and ν = 0.3 since they have little influence on the computed 
factor of safety. 
 

 
Fig.1: Nodal distribution for the meshfree model with vector and color-coded displacements. 
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Fig. 2: The deformed model with color-coded normalized displacements, FS = 1.52. 

 
The final output in Fig. 2 gives the "toe" type mechanism of failure. The results of safety factor 

(FS) where the meshfree model has been cross-validated using conventional finite element model 
(Fig. 3) and limit equilibrium Janbu method (Fig.4) are summarized in Tab.1.  

 
 

 
Fig. 3: The deformed FEM mesh at failure, FS = 1.57. 

 
 

 
Fig. 4: Trial slips surfaces and critical slip surface LEM - Janbu, FS = 1.62. 

 
The failure mechanisms, as well as FS values, resolved using mentioned computational 

methods shows excellent agreement with the meshfree model. The results showed the ability of the 
implemented meshfree method to evaluate the slope stability tasks. 
 
 
5 Conclusions 
 

A meshfree localized Petrov-Galerkin method (MLPG) code has been developed for nonlinear 
material analyses. The results of the used method in solving nonlinear problems are compared to the 
finite element method (FEM) and limit equilibrium (LEM) results of a similar problem.  

Slope stability numerical example is provided to illustrate the implementation, performance, and 
behavior of the MLPG method. The simulations to evaluate and analyze slope stability problems 
performed using the meshfree showed no stress discontinuities and the evaluation of stability better 
quantified. This important aspect of meshfree simulations should be focused on future work. 
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