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1 Introduction 
 

The theory and applications of differential equations and their systems play an important role in 
modern dynamics. Such equations are mathematical models of various real-life phenomena, e.g. in 
population dynamics, ecology, medicine, economics, natural sciences, and last but not least in the 
structural dynamics when studying vibrations of structures that interact with fluid flows: bridges, 
buildings, airplanes. At a certain flow speed, increasing oscillations may be triggered. A famous 
example was the collapse of the Tacoma-Narrows suspension bridge near Seattle in 1940 under a 
moderate wind speed of about 40 mph. For this reason the study of the stability and long-time 
behaviour is very important.  
 
1.1 Mathematical background 
 

Informally we can state that some structure is stable at an equilibrium position (fixed point) if it 
returns to that position upon being disturbed by an extraneous action.  

From the mathematical point of view we consider dynamical autonomous system of differential 
equations  
 

,  
,            

              
,                                                                                                                            (1)                                                         

 
or in vector form ẏ = ƒ(y) where the vector function ƒ is defined on some domain Ω ϵ Rn. Domain Ω is 
called phase space and implicitly contained variable t is time. Functions on right-hand sides of (1) are 
continuous; partial derivatives δƒi /δyk, i, k = 1, 2, ..., n exist and are continuous, too.  

These suppositions guarantee that through each point in Ω it passes unique solution 
y(t) = (y1(t), y2(t), ... yn(t)). A solution φ(t) = (φ1(t), φ2(t), ... φn(t)) to system (1) satisfying initial 
conditions φ(t0) = φ0 is called (Ljapunov) stable on the interval [t0,∞) if for arbitrary ε > 0 there exists  
δ > 0 such that for each solution to (1), when initial values satisfy inequalities |yi(t0) − |< δ, i = 1, 2, ... 
n then it holds |yi(t) − φi(t)|< ε, i = 1, 2, ... n for all t ≥ t0.  A solution φ(t) is called asymptotically stable if 
it is stable and it holds limt→∞|yi(t) − φi(t)| = 0, i = 1, 2, ... n. Geometrical meaning is that solutions  
“close” at the beginning (for t = t0) remain “close” also for all values t ≥ t0.  Constant vector y* = 

 ϵ Ω such that ƒi(y
*) = 0, i = 1, 2, ... n is called equilibrium or fixed point. We note that  

y = y* is also a solution to (1). This problematics is very well described in [1]. 
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In the following we deal with homogenous second order linear system of differential equations 
with constant coefficients. It is the simplest case of dynamical system and the interpretation of 
solutions in plane is possible. Despite of its simplicity it can be used as a model in many applications 
and it is important to study behaviour of its solutions. They can be different in dependence of system 
coefficients. Particular solution to system (1) can be understood as a graph of a function in domain  
R x Ω or as a curve in Ω given by parametric equations y = y(t). Such curve is called trajectory or 
phase portrait of solution. Set of phase portraits of all solutions is called phase portrait of system.   

Every second order linear differential equation can be rewritten as a system of two first order 
linear differential equations as follows. Let us consider the general equation 
 

,                          (2) 
 
where a, b, c are constants. If we define x = x1 and ẋ1 = x2 then equation (2) comes into system 
 
   
 ,                (3) 

 
which can be written in standard form 
 

, 

where  is  constant matrix.  

 
Stability and behaviour of solutions of such system can be determined using eigenvalues of A. 

Eigenvalues λ1,2 can be found by solving the characteristic equation, i.e. |A − λI| = 0. If all real parts of 
eigenvalues are negative, equilibrium is asymptotically stable. If there exists at least one eigenvalue 
with positive real part, equilibrium is unstable. In our case characteristic equation is 
 

                            (4) 

 

and its roots - eigenvalues are  . 

 
It is visible that stability, character of fixed points and phase portraits depend on constants  

a, b, c ϵ R. According to eigenvalues we can classify the simple fixed points. According to [2], if 
eigenvalues are real and different, we have three possible cases: if λ1 > 0 > λ2, fixed point is called 
saddle, if λ1 > λ2 > 0,  it is called unstable node, and if 0 > λ1 >  λ2, it is stable node. If there exists only 
single eigenvalue, i.e. λ1 = λ2, equilibrium is called unstable improper node, if λ1 > 0 and stable 
improper node, if λ1 < 0.  If eigenvalues are complex, i.e. λ1,2 = α ± iβ, β > 0 equilibrium is called 
unstable focus, if α > 0, stable focus, if α < 0, and centre, if α = 0. 
 
 
2 Stability of dynamical systems with one degree of freedom 
 

In order it would be possible to analyse dynamics of some complicated mechanical systems [3], 
first it is essential to understand the properties of the simplest possible mechanical system – a system 
with one degree of freedom [4]. In this part we will focus on vibrations, mathematically, on the stability 
and phase portraits of solutions to second order linear autonomous systems with constant coefficients 
modelling behaviour of undamped and damped mechanical oscillator. 
 
2.1 The undamped mechanical oscillator 
 

The motion of undamped mechanical oscillator is represented by the single rigid mass point 
attached to a spring displayed in Fig.1. 
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Fig. 1: Undamped mechanical oscillator. 

 
It is assumed that the mass m causes vertical translation movements; the spring does not have 

any mass but stiffness k. No other external force is considered. The second order differential equation 
describing this motion is 
 

.     
             
It is the equation of type (2) with coefficient b = 0. Using substitution v = x and ẋ = y we come to 
homogeneous differential system of type (3) with zero equilibrium in the form  
 

 
.                (5) 

 
Characteristic equation for this system is according to (4) λ2 + k/m = 0. Eigenvalues are complex with 
zero real parts λ1,2 = ± i. . Equilibrium is stable but not asymptotically stable. General solution to 
system (5) can be written in the form: 
 

 .       (6) 

 
where ω[rad.s-1] is the angular frequency and constants Ci, i = 1, 2 are determined by initial conditions 
of the oscillation. The sum of square roots of equations in (6) is x2 + y2 =  > 0 Phase 
trajectories are concentric circles, centred at the origin, phase portrait is displayed in Fig. 2 and 
equilibrium is called centre. 
 

 
Fig. 2: Centre. 

 



Civil and Environmental Engineering  Vol. 14, Issue 2/2018, 153-158   
 

 2.2 The damped mechanical oscillator 
 

The equation of motion of damped oscillator is second order differential equation with constant 
positive coefficients of type (2) in the form    

 
.        

   
Coefficient b represents a damping force and it is conjunction of velocity and viscose linear damping 
coefficient. Graphically, it is also represented by the spring and mass point as displayed in  Fig. 3. 
 

 
Fig. 3: Damped mechanical oscillator. 

 
Using the same substitution as in previous case we obtain second order linear system of type 

(3) in the form 
 

 
.               (7) 

 
Its characteristic equation is in accordance with (4)  and eigenvalues are 

 

.              (8) 

 
Now we will focus on character of fixed point (0,0) in dependence on the values of system 

coefficients m, b and k. For their different values, phase portraits of system will be displayed and 
stability of trivial solution will be determined. Three cases depending on discriminant in (8) will be 
studied.  
 
2.2.1 Critically damped oscillation 
 

This oscillation occurs when b = bcr = 2  hence value of damping coefficient is equal to 
value of critical damping coefficient, discriminant in (8) is equal zero. Since all coefficients must be 
positive, there exists single real negative eigenvalue λ1 = − b/(2m) trivial solution  is  asymptotically  
stable, equilibrium is stable improper node and the phase portrait is displayed in Fig. 4.   
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Fig. 4: Stable improper node. 

 
We can consider concrete values of coefficients: example: m = 78.9 kg, k = 998667Nm-1, and  

b = bcr = 17753.3 kg.s-1. Then  λ1 = − 112.5 < 0.  
  
2.2.2 Overdamped oscillation 
 

When b >bcr, i.e. the value of damping coefficient is higher than critical damping coefficient, we 
speak about overdamped oscillation. Discriminant in (8) is positive, there exist two real negative and 
different eigenvalues, trivial solution is asymptotically stable, equilibrium is called stable node, the 
phase portrait is displayed in Fig. 5.  

Example of concrete coefficients: m = 78.9 kg, k = 998667Nm-1, and b = 18000 kg.s-1, 
bcr= 17753.3 kg.s-1. Different negative eigenvalues are λ1 = − 95.247, λ2 = −132.890.  
    

 
Fig. 5: Stable node. 

 
2.2.3 Underdamped oscillation 
 

If b<bcr, i.e. the value of damping coefficient is lower than critical damping coefficient, the 
oscillation is underdamped. In this case, discriminant in (8) is negative, there exist two eigenvalues 
which are complex conjugates, their real parts are negative, trivial solution is asymptotically stable, 
equilibrium is called stable focus, the phase portrait is displayed in Fig. 6.  

Example: m = 78.9 kg, k = 998667Nm-1, and b = 1950 kg.s-1, bcr = 17753.3 kg.s-1. Complex 
eigenvalues with negative real parts are:  λ1,2 = − 12.357 ± 111.824i.  
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Fig. 6: Stable focus. 

 
 

3 Conclusion 
 

In this paper the connection between mathematical stability theory and vibration problems in 
structural dynamics was presented. Simple models of mechanical oscillator were studied in 
undamped, critically damped, overdamped and underdamped cases. Motions of mechanical oscillator 
were modelled using second order linear homogenous autonomous systems of differential equations. 
Phase portraits of systems were displayed for each case with respect to various system coefficients, 
especially damping coefficient, and character of equilibrium was described. In undamped case trivial 
solution is stable, but not asymptotically, phase portrait is formed by concentric circles and equilibrium 
is called centre. In other cases trivial solution is asymptotically stable. If damping coefficient is equal to 
critical damping, equilibrium is called stable improper node, if this coefficient is greater than critical 
damping, equilibrium is stable node, and if it is smaller, equilibrium is called stable focus. Knowledge 
of behaviour of simple dynamical systems can enable to study more complicated systems.     
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