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1 Introduction 
 

Wind (air motion) is variable both in time and height. Moreover, its flow is not constant over the 
windward side of the building. In fact, authors in [2] stated that wind is a complicated phenomenon. It 
is mainly caused by turbulent flow. This phenomenon can be explained by irregular motion of single 
particles. Because of that, the emphasis must be given on a detailed study of statistical distributions of 
wind speeds and directions rather than to simple averages. 

Nowadays, high-rise buildings are becoming an integral part of most urban landscapes [3]. It is 
caused by growing urbanization. It is very important to consider the effect of wind for a design of high-
rise buildings. The wind effects vary in accordance with the shape or height of designed buildings. It 
depends also on the surroundings which alter with the city development [4]. The effects of the wind on 
a building are usually determined using the external pressure coefficient cpe. The Eurocode contains 
only the values cpe for two types of buildings. Structures with rectangular and circle plan are mentioned 
in the code. Presently, it is a serious problem for structural engineers - determination of pressure 
coefficient for a high-rise building with atypical ground plan and shapes. This paper deals with 
experimental determination of the cpe for the high-rise building with the cross-section of the letter “S” 
(Fig. 1). The experimentally determined values are compared to the values from CFD simulation and 
the values from the Eurocode 2. The comparison has been performed at four levels of the 
experimental model. 
 
 
2 Determination of external pressure coefficient by  experiment in BLWT 
 

Dimensions of the model were L × W × H = 150 × 150 × 300 mm, Fig.1. The scale of model 
was 1 : 350. Wind directions were 0°, 45°, 90° and 135°. Total 56 measured points were used, being 
placed in four levels (in each of the 14 sensors).  
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In this article, the results of pressure coefficient on the atypical object 
obtained by experimental measurements in a boundary layer wind 
tunnel (BLWT) of Slovak University of Technology in Bratislava (STU) 
and computational fluid dynamics simulation (CFD) are presented. 
The pressure coefficient is one of the most important parameters 
expressing the wind pressure distribution on the structure. The 
loading by wind can only be acquired by execution of detailed tests 
and numerical analyses [1]. 
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Fig. 1: Cross-section with measured points (with wind direction) and view of model. 
 

Experimental measurements of external pressure coefficient were realized in the BLWT (Fig. 2) 
in the rear operating space. It is possible to develop the turbulent wind flow here. Speed of the wind 
can be varied from 0.3 m/s up to 15 m/s [5]. Terrain is classified between category III and IV. Other 
information about BLWT can be found in [6]. 

 

Fig. 2: The wind tunnel - BLWT STU and the experimental “S” model [6]. 
 
From pressure p(z), the external pressure coefficient cpe according to (1) were calculated, while 

basic velocity pressure qb based on air density ρ and reference wind velocity vref in tunnel [7] was 
obtained.  
 

 ,                                                                                                             (1)  

 
where: vref = 13.54 m/s; ρ = 1.15 kg/m3. 

 
This procedure has been performed at four height levels of the “S” experimental model. Level A 

at the upper edge, at the reference height 2/3 H (Level B), Level C in the middle and at the lower part 
(Level D). Fig. 3 shows the values of cpe. These values have been obtained experimentally.  
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Fig. 3: Experimentally obtained values of cpe for the “S” model (Levels A to D). 

 
Fig. 3: Experimentally obtained values of cpe for the “S” model (Levels A to D). 

 
 
4 Numerical simulations (CFD) - Calculation of exte rnal pressure coefficient 
 

All simulations were run in ANSYS Fluent [8] using SST k-ω model. The computational domain 
had dimensions L × W × H = 4.7 × 2.3 × 18 m and the model, illustrated in Fig. 1, was placed 1 m 
behind the inlet surface. The recommended maximum blockage of 3 % also states that all the distance 
conditions were accomplished [9, 10]. Namely, distance from the building to the side, to the outlet, to 
the inlet and to the top of the domain. A small subdomain with dimensions 1.8 × 0.35 × 0.4 m was 
created, with refined size of mesh. 

Three types of mesh to perform grid sensitivity were created. All grids were generated using 
cutcell elements. First mesh was generated using course relevance center (Fig. 4a). The element size 
on surface of the model was 0.02 m with soft behavior while the inflation was applied with 5 layers with 
a growth rate of 10 %. The element size in small refine subdomain was 0.08 m. The inflation was also 
applied on bottom boundary with 2 layers with growth rate of 10 %. All other settings were left on 
default. 32471 elements with 36984 nodes were generated. Second mesh was generated using 
medium relevance center (Fig. 4b). The element size on surface of the model was 0.01 m with soft 
behavior while the inflation was applied with 5 layers with growth rate of 10 %. The element size in 
small refine subdomain was 0.04 m. The inflation was also applied on bottom boundary with 2 layers 
with growth rate of 10 %. All other settings were left on default. 63987 elements with 71306 nodes 
were generated. Third mesh was generated using fine relevance center (Fig. 4c). The size of the 
surface element was 0.005 m with soft behavior while the inflation was applied with 5 layers with 
growth rate of 10 %. The element size in small refine subdomain was 0.02 m. The inflation was also 
applied on bottom boundary with 2 layers with growth rate of 10 %. All other settings were left on 
default. Finally, 232809 nodes were generated. These nodes represented 212749 elements.  

 

WIND DIRECTION 0° WIND DIRECTION 45° 

WIND DIRECTION 90° WIND DIRECTION 135° 
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Fig. 4: Illustration of the mesh of bottom boundary for different mesh refinement. 

 
The inlet boundary conditions of the domain are defined by the logarithmic vertical profile 

  
 ,                                                                                                                            (2) 

 
where u(z) represents the mean wind velocity and u

* represents shear velocity, z is elevation, z0 is 
aerodynamic roughness height and κ is von Karman constant. It is recommended to use aerodynamic 
roughness height in tunnel scale z0 = 0.00233 for wind simulation in SvF STU Wind Tunnel Laboratory 
in Bratislava. The k-ω model inputs are based on turbulent kinetic energy k and specific turbulence 
dissipation rate ω as follows: 
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where Cµ is model constant and turbulence dissipation rate ε is given by 
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The outlet boundary is defined as pressure outflow and the side and upper boundary as zero 

gradient or symmetry. The bottom boundary is simulated as a through wall. For through wall the 
method proposed in [11] is used 
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= ,   (6) 

 
where ks is the roughness height of wall function, cs is the roughness constant of wall function and  
E = 9.79 is the log law of the wall constant.  
 

    
Fig. 5: Detailed views of the computational grids – three cases.  
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All simulations ran as steady pressure-based. SIMPLE pressure-velocity coupling scheme with 
second order spatial discretization method was used for solution. Solution was initialized using hybrid 
initialization with default setting. The calculations were performed using a PC with one Intel Core  
i7-3930K 3.2 GHz processor and 32 GB DDR3 memory. 

The grid convergence is presented in Fig. 6, while the calculation grid with elements size  
0.005 m corresponds the most with the experiment results. For this reason, only the results obtained 
using the finest grid, will be presented. The obtained values of cpe from the CFD calculations are 
shown in Figs. 7 - 10. 

  

 
Fig. 6: Grid convergence Level C, wind direction 0°. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7: Values of cpe obtained from CFD for direction 0°. 
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Fig. 8: Values of cpe for models from CFD simulation (front view, rear view, axonometry) - 45°. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Values of cpe for models from CFD simulation (front view, rear view, axonometry) - 90°. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10: CFD Simulations - Values of cpe for numerical models (axonometry on the left, front and rear 

views) - 135°. 
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5 Conclusion 
 

The comparison of coefficient cpe obtained by experimental measurements and computational 
fluid dynamics simulation for four wind directions is presented in Table 1. The extreme values of cpe 
were -1.34 (-1.79) and 0.81 (0.85), which were occurred in level B. In comparison between CFD 
simulation and experiment, these results were in a good agreement and smaller varieties were only 
observed in the induction area.  

 
Table 1: Comparison of extreme values of cpe for the “S” model (Level A, B, C and D). 

 
 

The most unfavorable wind direction was at an angle of 45°. Comparison of cpe for level B this 
direction was made in cross-section in measured points, Fig. 11. 
  

 
Fig. 11: Comparison of experimentally and numerically obtained cpe at Level B for wind direction 45°. 
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