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1. Introduction 
 

Pavements are structures that are exposed to direct dynamic effects of the moving load. 
Unevenness of the pavement surface is the main source of kinematic excitation for the vehicle. They 
have significant influence on the magnitude of the contact forces between the pavement surface and 
the vehicle tyres. The actual load amplitude is variable of time and frequency domain. There are two 
basic approaches to obtain the required data – computational or experimental methods. The reliability 
of transport structures loaded by the heavy traffic needs a detailed analysis using vehicle-ground 
interaction computational model to describe the response of the ground to the vehicle loading [1, 2]. 

There are many possibilities how to create the computational model of the pavement and the 
vehicle. Two interaction models of 2D half-part model of the vehicle Tatra 815 and the ground were 
created and results of the comparison of outputs of these models are presented in this paper. In the 
first numerical simulation (S1), the contact load is modelled as a point load representing tyre contact 
forces. In the second numerical simulation (S2), contact load is simulated as a uniform distributed load 
over the tyre contact area. The theoretical solution is based on the Finite Element Method (FEM). FEM 
methods have been more widely used since computer calculations became part of the modelling tools. 
In this case, simulations S1 and S2 are non-stationary dynamic actions and they are described by the 
following differential equation:  
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where [M], [C] and [K] are mass, damping and stiffness matrices describing the spatial properties of 
the vehicle and pavement interaction.  

 
 

2. Numerical model of vehicle 
 

Several computing systems are available for the FEM dynamic analysis of the presented 
problem. Models for simulation 1 (S1) and simulation 2 (S2) have been created in ADINA software. 
Particular elements of corresponding models S1 and S2 were assumed modular. Two main parts of 
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the system lorry-ground have been a lorry with subsequent simplification to the dynamic subsystems 
and a half space representing the ground under the pavement surface. For the simulations, the half-
part model of the lorry Tatra 815 has been selected (Fig. 1). A discrete model of the vehicle with finite 
degrees of freedom simplifies the mathematical solution of the problem. This assumption transforms 
partial differential equations to the ordinary differential equations [3]. 

 

 
Fig. 1: Half-part model of the lorry Tatra 815. 

 
The main characteristics of the half-part model are defined by three diagonal matrices – mass 

{mi}, stiffness {ki}, and damping {bi} matrices which contain experimentally measured values [3]. 
Matrices values for the lorry model have been determined: 

{mi}D = {m1, Iy1, m2, m3, Iy3}D = {11475; 31149; 455; 1070; 466}D,                                            [kg, kg·m2], 
{ki}D = {k1, k2, k3, k4, k5}D = {143716.5; 761256; 1275300; 2511360; 2511360}D,                           [N·m-1], 
{bi}D = {b1, b2, b3, b4, b5}D = {19228, 260197, 2746, 5494, 5494}D,                                                 [kg·s-1]. 

The natural frequencies have also been determined:  
{f} ={f(1); f(2); f(3); f(4); f(5)}={1.13;1.45; 8.89; 10.91; 11.71}                                                                     [Hz]. 
 
 

3. Numerical model of pavement 
 

Properties for the asphalt pavement were assumed in the calculations. The pavement 
configuration is shown in Fig. 2. Three upper layers (asphalt concrete) are considered as the beam 
with the height of h = 140 mm and the width b = 1.0 m. The equivalent modulus of elasticity and cross 
section moment of inertia were calculated for these layers E = 4800 MPa and I = 2.286667·10-4 m4. 
Layers 4 – 6 are introduced into calculation as Winkler foundation. Modulus of reaction  
K [MN/m3] was calculated in the program LAYMED [4]. The mass intensity of the beam µ [kg/m] is  
310 kg/m. The damping is introduced using angular frequency ωb = 0.1 rad/s. 

 
Fig. 2: Multi-layered model of the ground (left) and beam on the springs simplification (right) [5]. 

 
 
4. Description of numerical simulation 
 

One of the most important parts of the process of the numerical simulation is to create a proper 
computing model. For this case, the plane 2D model of the lorry Tatra 815 was selected as a 
representative vehicle (Fig. 1).  The vehicle is moving on the pavement with specified material 
characteristics. Simulations S1 and S2 have been created using the computer software ADINA. It 
allows defining contact pairs between the elements of the vehicle and the ground to simulate the 
interaction between the pavement and the vehicle. The calculations have been executed with inputs of 
the lorry Tatra 815 as mentioned above.  

The asphalt layers of the pavement have been modelled as a beam element of length 50 m. 
The pavement is composed of surface for acceleration (5 m), surface for ride with constant speed  
(40 m) and surface for deceleration (5 m) (Fig. 3 and Fig. 4). Winkler elastic subbase is represented by 
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the springs with specified stiffness defined by the modulus of reaction K. The ground is restrained by 
the boundary conditions and degrees of freedom that are necessary for the calculation. 

An effective implicit time integration scheme was proposed for the finite element solution of 
nonlinear dynamic problems. Direct time integration is widely used in the finite element solutions of 
transient wave propagation. We consider the Bathe method and the Newmark trapezoidal rule [6].  

 
4.1 Numerical simulation S1 

Contact forces have been applied as a point loads acting in nodes (Fig. 3). Each force 
represents axle load acting on the pavement surface. 
   

 
Fig. 3: Scheme of the computational model for the simulation S1. 

 
4.2 Numerical simulation S2 

Contact forces acting on the contact tyre areas are spread over these contact areas for this 
simulation. The tyre pressures are applied as a uniform distributed load (Fig. 4). 
 

 
Fig. 4: Scheme of the computational model for the simulation S2. 

 

 
5. Description of the numerical procedure 

 
ADINA is commercial engineering simulation software that is used in industry and academia to 

solve structural, fluid and heat transfer, and electromagnetic problems. ADINA can also be used to 
solve multi-physics problems, including fluid-structure interactions and thermo-mechanical problems. 
ADINA is the acronym for Automatic Dynamic Incremental Nonlinear Analysis. The program consists 
of four core modules: 

• ADINA Structures for linear and nonlinear analysis of solids and structures, 
• ADINA Thermal for analysis of heat transfer in solids and field problems, 
• ADINA CFD for analysis of compressible and incompressible flows, including heat transfer, 
• ADINA EM for analysis of electromagnetic phenomena. 
These modules can be used fully coupled together to solve multi-physics problems where the 

response of the system is affected by the interaction of several distinct physical fields (e.g. fluid-
structure interaction, thermo-mechanical analysis, piezoelectric coupling, Joule heating, fluid flow-
mass transfer coupling, electromagnetic forces on fluids and structures, etc.) [7]. 
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5.1 Principles of numerical solver  
An effective implicit time integration scheme was proposed for the finite element solution of 

nonlinear dynamics problems. Direct time integration is widely used in the finite element solutions of 
transient wave propagation problems. However, accurate solution is difficult to obtain because of 
numerical dispersion and dissipation, resulting from period elongations and amplitude decays. In the 
solution of transient wave propagations, the errors from the spatial and temporal discretization appear 
together and affect each other. Analyses of these errors have led to the use of linear combinations of 
consistent and lumped mass matrices. Another approach is to reduce the solution errors by evaluating 
the mass and stiffness matrices using modified spatial integration rules. Such schemes can improve 
the accuracy of solutions of multi-dimensional wave propagation problems when using certain 
elements and meshes. 

The dispersion errors resulting from the spatial discretization coupled with the temporal 
discretization are analysed. The Bathe method and the Newmark trapezoidal rule is considered. For 
this purpose, we handle the solution obtained for the scalar wave governed by: 
 

022
02

2

=∇−
∂
∂

uc
t

u
,                                                                                              (2) 

 
where u is the field variable and c0 is the wave velocity. Here, body forces are not considered since we 
focus on the dispersion associated with the propagations of disturbances due to initial conditions. The 
associated finite element discretization gives: 
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where K and M are the stiffness and mass matrices, and for element (m) with volume V(m) : 
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Here, H(m) and U are the element interpolation matrix and the nodal values of the solution, 

respectively. The matrices M and K in Eq. (3) are obtained by the usual summation process.  
In the Bathe method, the following relations are employed: 
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Using Eq. (3) at times t, t + ∆t/2 and t + ∆t, where t denotes the current time and ∆t the time 

step, with Eqs. (6) – (9), we obtain a linear multistep form of the Bathe method: 
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Using the definition of the CFL number, , where h is the characteristic length of a finite 

element (or used fundamental length), Eq. (10) becomes: 



Stavebné a Environmentálne Inžinierstvo                          Vol. 12, Issue 2/2016, 78-83  

 
 

( ) ( ) ( ) 05725144872 2 =+++−++
∆

+∆+ UKMUKMUKM t
t

ttt γγγ ,      (11) 
 
where γ = CFL2h2, [5]. 
 
 
6. Results and discussion 

Following charts represent the outputs of the simulations S1 (point load) and S2 (distributed 
load) for vertical accelerations, velocities and displacements. Results are presented for quantities in 
vertical axis and have been obtained in 2D simulations in XZ plane. 

Charts show minor differences between results of both simulations with the exception of the 
vertical accelerations a3. Distributed load (S2) causes significantly larger values of the vertical 
accelerations. Differences are up to 300 % for the peak values corresponding to the axle passes. 
Differences in the values of the velocities v3 and displacements u3 between simulations reached 12 to 
22 % and 5.1 to 7.3 % respectively. 
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Fig. 5: Propagation of vertical accelerations for simulations S1 and S2. 
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Fig. 6: Propagation of vertical velocities for simulations S1 and S2. 
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Fig. 7: Propagation of vertical displacements for simulations S1 and S2. 
 
 
6. Conclusions  
 

The article demonstrates that the using of FEM methods can give useful results of numerical 
analysis of this phenomenon. Two approaches of load application are presented in this paper. It has 
been used point or distributed load, for simulation wheel pressure on the pavement needs to be 
considered. Depending on the investigated quantities the outputs bring differences that will be verified 
by the experimental measurements in further studies. Distributed load show of larger deviations was 
compared to the point load simulation, especially for the vertical accelerations. Quantities such as 
accelerations and velocities are crucial for the evaluation of the influence of the traffic load on the 
surrounding building structures in terms of the technical seismicity standards. On the contrary, 
propagation of the vertical displacements can be considered equal for both simulations. 

The distributed load better describes the real effect of the tyre on the pavement and non-
uniform distribution of the tyre pressure will be investigated in further research using experiment and 
numerical modelling.     
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