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1. Introduction 
 
The wave phenomena that occur in the materials with particular elastic potential, i.e. elastic 

in  Green's terms, should be regarded as propagation of waves of discontinuities and travelling waves 

in the material continuum modelled as nonlinear isotropic elastic medium, which is both compressible 

and incompressible. Process of propagation of a disturbance in a material continuum modelled 

as  a  moving surface of discontinuities is one of the most difficult problems of contemporary 

continuum mechanics. With this approach, the propagating wave represents a disturbance which 

is  strictly reduced to the surface. The advantage of this concept lies in the opportunities 

for  considering wave phenomena from the standpoint of a relatively uniform theory that 

does  not  require any simplification assumptions. The constantly improving methods of determination 

of elastic constants for compressible and incompressible materials offer increasingly better 

opportunities for a more comprehensive experimental analysis. The data obtained with these analyses 

are necessary for development of modern measurement techniques and modelling the processes 

that  occur due to propagation of disturbance in a continuum. Furthermore, they are extremely useful 

for formulation and adopting physical assumptions for determination of a mathematical model 

of  a  body and are used for verification of the correctness of the calculations. Knowledge about wave 

phenomena that concern the problems of propagation of the surfaces of discontinuities in the material 

continuum has many practical implications. Demonstration of the differences that occur during 

propagation of disturbance in the commonly used model of Mooney-Rivlin material compared to less 

popular Zahorski material is also likely to contribute to development of new forms of practical 

application of nonlinear rubber and rubber-like materials for technological solutions, including those 

used in the broadly understood construction sector. 

 

 

2. Constitutive equations of hyperelastic materials – general information 
 

Behaviour of a particular material caused by various external factors is described by means 

of  the constitutive equations which are also termed physical relationships for a particular material 

medium. Physical relationships that describe behaviour of materials subjected to deformations have 

been investigated since the beginning of the 20
th
 century. Further, in the forties and fifties, the first 

attempts were also made to determine the constitutive relationships that describe behaviour of rubber 

and rubber-like materials [1], [2]. A general form of the function of elastic energy was obtained in 1951 
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by Rivlin and Saunders [3]. Based on the studies above, rubber-like materials are considered 

as  incompressible. The function of deformation energy for these materials depends on two invariants 

of the deformation tensor and on two constants. Describing the elastic behaviour of rubber-like 

materials with substantial deformations became possible after introduction of the function 

of  deformation energy by Zahorski in 1959 [4], with incompressible material described by nonlinear 

dependency on the invariants of deformation tensor. 

Constitutive equations that describe the relationships between deformations and stresses 

or  between deformations and energy for hyperelastic materials are obtained based on the equations 

of mechanical energy balance. These relationships have the nature of phenomenological relations 

determined usually by means of experimental studies and represent a specific link that connects 

deformation of the material caused by the stress. The model of material is adopted depending 

on  the  factors that are of essential importance to behaviour of the specific medium. Therefore, 

constitutive equations define an arbitrary selected model of material which describes its actual 

behaviour (better or worse) in a particular are of changes in these factors. In terms of the theory 

of  elasticity and in broadly understood mechanical problems, including continuum mechanics, elastic 

bodies are considered as material continuum with internal bonds and without them. For the elastic 

bodies without bonds, the properties of such a medium are given if the function W  can be defined, 

which, for any deformation d  of this medium, determines the corresponding elastic energy )d(WW   

accumulated in the unit of volume with respect to the reference configuration 
R

B . Function W  

is  typically defined as a function of deformation energy. 

For uniform isotropic elastic bodies, the constitutive equations can be written as 

 

)I,I,I(WW 321 ,                (1) 

 

where 
321

I,I,I
 
are invariants of the deformation tensor. 

 

An elastic body with imposed internal bonds (with its most significant form being 

incompressibility) cannot be subjected to any deformations. The only acceptable deformations 

with  regard to incompressible bodies are deformations which do not change its volume (isochoric), 

which have to meet the following condition 

 

13 I ,                  (2) 

 

thus, deformation energy for an incompressible body represents a function of only two other 

invariants. This can be re-written in a form which is analogous to the condition (1) 

 

)I,I(WW 21 .                (3) 

 

The equations (2) and (3) define the constitutive relations for incompressible material. 

With large deformations, each of the rubber-like materials (natural or synthetic) behaves 

in  a  specific manner. Therefore, it is necessary to determine, for each individual case of experimental 

procedure, a model of constitutive equation, because one cannot adopt one generalized relationship 

which would suit different problems. 

 

 

3. Model of Zahorski material 
 

Model of Zahorski material is described by the equation with nonlinear dependency 

on  the  invariants of the deformation tensor. This description determines behaviour of rubber 

at  significantly greater deformations compared to neo-Hookean or Mooney-Rivlin material, whereas 

constitutive relationship for this material adopts the form 
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where 

 

W         - specific elastic energy in the configuration 
R

B , 

         - elastic energy accumulated per mass unit, 

R         - mass density in the reference configuration 
R

B , 

21 I,I         - invariants of the deformation tensor, 

321 C,C,C     
- material constants. 

The first and the second derivative of the function  with respect to the invariants 

of  the  deformation tensor 
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Other derivatives are 

 

0211222  .                (6) 

 

If the constant C3=0, the Mooney-Rivlin material is obtained 

 

     33 221121  ICICI,IW R
.              (7) 

 

The Table 1 below presents elastic constants for three grades of rubber. The values presented 

in  the Table 1 are based on the study [5]. The values of the constants were obtained by computing 

per  SI system units.  

 

 

Table 1: Material constants for three kinds of rubber. 

Constants 
Rubber "A" 

[Pa]  
Rubber "B" 

[Pa] 
Rubber "C" 

[Pa] 

1C  410278.6   510099.2   510453.3   

2C  310829.8   410275.1   0  

3C  310867.6   310924.3   410256.2   

 

 

For the rubber analysed in this study: “A” (hardness 50-51
o
Sh), “B” (hardness 55-56

o
Sh) 

and  “C” (hardness 73-74
o
Sh), the following content of the mixture (see [5]). 

The constitutive equation (4) allows for a more comprehensive analysis of the wave phenomena 

that propagate in the elastic incompressible materials with respect to Mooney-Rivlin material. 

A  description that describes the behaviour of rubber with greater deformations was obtained. 

For  the  main elongation, this is even true for λ = 3, whereas in neo-Hookean and Mooney-Rivlin 

materials, the acceptable results are obtained for λ = 1.4 [6]. 

The nonlinear term )I(C 92

13   
present in the equation (4) allows for an in-depth analysis 

and  introduction of other qualitative elements for the description of wave processes. The relationship 

(4) models the effects of dynamic behaviour of materials and is used for the analysis of wave 

phenomena concerning propagation of the disturbance in the form of shock waves, travelling waves 

and solitary waves ([7], [8], [9], et al.) 

 

 

4. Model description and aim of the study 
 

For the numerical modelling of the distribution of velocities and stresses generated 

with  the  waves of discontinuities adopted by the 2D, being the longitudinal cross-section 


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with  the  length of 1 m (Fig. 1). Initial and final height of the longitudinal section of a round rod 

are  10  cm. The load of the rod analysed was forced linear dislocation of the edges L3 towards 

the  y  axis. The value of the forced displacement amounted to 10 cm for the time t = 0.1045 s, which 

is consistent with the literature (see [10]). On the opposite (with respect to the load) L1 edge, 

the  bonds were imposed to prevent from displacement towards y and z axes. These are bonds {B}, 

see Fig. 1. Discretization of the object discussed was carried out by means of 4 nodes. In general, 

1000 flat elements (2D) we obtained for the longitudinal cross-section of the rod analysed. 

 

 

Fig. Chyba! Dokument neobsahuje žiadny text so zadaným štýlom.1: Model of incompressible rod 

in 2D: grid, load, boundary conditions and system of coordinates. 

 

 

The aim of the numerical calculations was to compare the distribution of velocities and states 

of  stress in Mooney-Rivlin material and Zahorski material for the above boundary conditions 

and  assumed deformations of the object that simulate uniaxial compression. Analysis of the state 

of  stresses in the nonlinear elastic mass made of two different materials seems to be the most 

convenient form of presentation of differences in the distribution of stresses and velocities that result 

from the differences adopted for the numerical analysis of the models of materials. In this range, 

we  focus on the study [11], where, also in the form of distribution of stress, the results 

of  the  numerical studies were presented. The declared load in the object occurred stepwise 

at  the  instant of t = 0.1045 s. The process of propagation of the disturbance in the model could 

be  observed in 100 other steps. Therefore, we obtained information about generation of the velocity 

of disturbance propagation in homogeneous incompressible rods made of two different hyperelastic 

materials. 

 

 

5. Comparative analysis of the results obtained for Mooney-rivlin and Zahorski materials 
 

For the boundary conditions studied and external effects (deformations), Fig. 2 and Fig. 3 

present the course of disturbance propagation in the rod for selected time steps, and illustrate 

the  distributions of the velocities and states of stresses for the rod made of two different hyperelastic 

materials. 

 

 

6. Conclusions 
 

The comparative analysis of distribution of the velocities and states of effective stress 

for  the  adopted model revealed insignificant differences in the distribution of both velocity and 

the  effective stress obtained for Zahorski and Mooney-Rivlin material. These differences result from 

the elastic potential adopted for the materials analysed.  

Fig. 2. illustrates distributions of velocities in the rubber "A" for vertical cross-section of the rod 

discussed. Insignificant differences in the distribution of velocity can be observed at the surface 

of  the  object studied. Mooney-Rivlin material has areas with the velocities higher than in the Zahorski 

material, Fig. 4. 

Fig. 3 illustrates distributions of stresses in the rubber "A" for vertical cross-section of the rod 

discussed. Insignificant difference in the distribution of effective stresses can also be observed 

at  the  surface of the object studied. Mooney-Rivlin material has areas with the stresses higher than 

in  the Zahorski material, Fig. 5. 
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Step 90 - the top figure is Mooney - Rivlin material, the second is Zahorski material. 

Step 100 - the top figure is Mooney - Rivlin material, the second is Zahorski material. 

Fig. 1: Distributions of the velocity of wave propagation [m/s] in Mooney - Rivlin material and Zahorski 

material for rubber "A" according to Table 1. 

 

 

Step 90 - the top figure is Mooney - Rivlin material, the second is Zahorski material. 

Step 100 - the top figure is Mooney - Rivlin material, the second is Zahorski material. 

 Fig. 2: Distributions of the effective stresses [Pa] in Mooney - Rivlin material and Zahorski material for 

rubber "A" according to Table 1. 
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Fig. 3: Comparison of the distributions of propagation velocity [m/s] for the rubber “A” according 

to  Table 1. The uppermost material is Mooney - Rivlin material, the second is Zahorski material. 

 

 

Fig. 4: Comparison of the states of effective stresses [Pa] for the rubber “A” according to Table 1. 

The  uppermost material is Mooney - Rivlin material, the second is Zahorski material. 

 

 

The comparative analysis of the velocity of wave (disturbance) propagation in Mooney - Rivlin 

and Zahorski material shows that the velocity of propagation of the wave in the rod ranges from 0 m/s 

to 1.75 m/s. There are areas for the rod studied with noticeable differences in the values of velocity 

between the rod made of Mooney - Rivlin material and the rod made of Zahorski material. Analysis 

of  wave propagation shows lower values of velocity of propagation in Zahorski material. Similarly, 

the  differences in the distribution of the values of the effective stresses can be observed between 

the  model of rod made of Mooney - Rivlin material and the model made of Zahorski material. 

The  values of the effective stresses range from 0 Pa to 45.000 Pa and, for Zahorski material, 

the  areas with lower values of stresses can be observed. The results obtained from model-based 

studies show insignificant qualitative and quantitative differences in distributions of stresses between 

Mooney-Rivlin material and Zahorski material since small differences occur between elastic potentials 

for both materials. Mooney-Rivlin material has two constants C1 and C2, linearly dependent 

on  the  invariants of the deformation tensor I1 and I2, whereas Zahorski material has three constants, 

with C1 and C2 being dependent linearly on the deformation tensor (similar to Mooney-Rivlin material), 

while the constant C3 depends nonlinearly on the deformation tensor I1. 
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