
 117

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 19, No 2

Sofia 2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2019-0019

Performance Analysis and Optimization Techniques

for Oracle Relational Databases

Fernando Almeida1, Pedro Silva2, Fernando Araújo2
1Faculty of Engineering, Oporto University & INESC TEC, Porto, Portugal
2Higher Polytechnic Institute of Gaya, ISPGaya, V. N. Gaia, Portugal

E-mails: almd@fe.up.pt ispg3881@ispgaya.pt fernando.jopinheiro@gmail.com

Abstract: Databases provide an efficient way to store, retrieve and analyze data.

Oracle relational database is one of the most popular database management systems

that is widely used in a different variety of industries and businesses. Therefore, it is

important to guarantee that the database access and data manipulation is optimized

for reducing database system response time. This paper intends to analyze the

performance and the main optimization techniques (Forall, Returning, and Bulk

Collect) that can be adopted for Oracle Relational Databases. The results have

shown that the adoption of Forall and Bulk Collect approaches bring significant

benefits in terms of execution time. Furthermore, the growth rate of the average

execution time is lower for Bulk Collect than Forall. However, adoption of Returning

approach doesn’t bring significant statistical benefits.

Keywords: Databases, performance analysis, optimization techniques, Oracle,

information systems.

1. Introduction

The demand for high performance processing is requested by several data-intensive

applications. In this sense processing techniques and data organization such as grid

computing, cloud and OLAP that have allowed the exploitation of a large volume of

data in feasible time [1, 2]. One of the fundamental components in data-intensive

applications is a data storage structure. Databases are a ubiquitous part of today’s

computing environment. DataBase Management Systems (DBMSs) are typically

complex and used also in mission-critical software systems [3]. In fact, DBMSs are

used in a wide variety of business and scientific applications, and also in the internet

and electronic commerce applications. Over the last three decades, relational DBMS

technology has proven to be highly adaptable and have evolved to accommodate new

application requirements and the ever-increasing size and complexity of data [4].

However, and due to the emergence of data-intensive and mobile applications during

the last years, the Object-Oriented DataBase Management Systems (OODBMSs)

have gained significant market share [5]. The idea behind the concept of OODBMSs

mailto:almd@fe.up.pt
mailto:ispg3881@ispgaya.pt
mailto:fernando.jopinheiro@gmail.com

 118

is that by supporting data as objects in databases, the overhead of converting between

objects and relations can be avoided, resulting in higher development efficiency and

better performance. Furthermore, OODBMSs offer new features which are not

present in the relational paradigm, such as the concepts of temporal evaluation of

data, derived attributes, polymorphism, dynamic binding, among others [4, 6, 7].

Oracle database management system is one of the earliest, robust and most

widely used in the context of storing and managing enterprise data. It incorporates

numerous features both in terms of functionality and in terms of performance and

scalability [8]. This characteristic of Oracle DBMS turns it specifically adequate for

professional applications that require advanced scalability and reliability. In order to

offer a development immersive environment that could take advantage of the features

offered by SQL, Oracle created in 1991 a Procedural Language (PL) that extends the

SQL language, which is called PL/SQL. PL/SQL is a standard data access language

for Oracle relational databases that offers features like data encapsulation, exception

handling, information hiding, and object orientation [9].

This paper focuses its analysis on looking for performance and optimization

techniques that could be adopted in Oracle relational databases. In fact, most major

database systems, including Oracle, started a few years ago to support the object-

oriented paradigm. However, and due to the importance of the relational model and

because it will remain the mainstream database model for many years, this work

considers only the relational database paradigm. The paper is organized as follows:

First, we perform a revision of literature in the field of relational databases by looking

for performance analysis perspectives and introducing optimization techniques in

Oracle PL/SQL. Subsequently, we present the adopted methodology and analyze the

main results for three considered scenarios (write data, write & read data, and read

data). Finally, we draw the conclusions of our work.

2. Related work

2.1. Relational databases and performance

Relational databases can be represented in tabular form consisting of rows and

columns. The data must be an elementary table and is organized into tuples. A DBMS

responds to commands given by application programs (e.g., SQL) in form of queries

results, messages and completion codes [10]. The nature of the relational model does

not require that users understand the representation of data in storage to retrieve it,

but they need to know SQL syntax. A DBMS system provides a Data Definition

Language (DDL) to specify and change the database schema, a Data Manipulation

Language (DML) to express database queries, and a Data Control Language (DCL)

to control the security and permission access. In practice, these three languages are

not separate, instead, they simply form part of a single database language, such as the

SQL [11].

Relational programming is nonprocedural. This allows that multiple tuples can

be selected simultaneously without the adoption of cycles created by the programmer.

G r e e n w a l d, S t a c k o w i a k and S t e r n [12] state “in a master-detail

 119

relationship between tables, there can be one or many detail rows for each individual

master row, yet the statements used to access, insert, or modify the data simply

describe the set of results”. Due to this property, programs access more than one

record in a relational database more easily which causes those relational databases

can be used more productively to extract large groups of data at once [13].

The activity of analyzing and improveing the system performance in DBMS is

called database tuning [14]. In order to make a system quicker, the database tuning

process involves typically change the data structures and parameters of a database

system, the configuration of the operating system, or including the hardware.

S h a s h a and B o n n e t [15] summarize the five principles of performance

considerations in a database environment:

 Think globally but fix locally – effective tuning requires a proper

identification of the problem and a minimalist intervention.

 Partitioning breaks bottlenecks – a slow system is rarely slow because all its

components are saturated. Usually, one part of the system limits its overall

performance. That part is called a bottleneck.

 Start-up costs are high but running costs are low – most objects devote a

substantial part of their resources to starting up. Therefore, it is expensive to begin a

read operation on a disk, but once the read begins, the disk can deliver data at high

speed.

 Render into Server side what is due to the Server – an important design

question is the allocation of work between the database system (the server) and the

application program (the client). S h a s h a and B o n n e t [15] refer that the

allocation of a specific task depends on three main factors: (i) the relative computing

resources of client and server; (ii) where the relevant information is located; and (iii)

whether the database task interacts with the screen.

 Be prepared for trade-offs – increasing the speed of an application often

requires some combination of memory, disk and other computational resources.

These resources typically cannot be individually optimized.

Other authors contributed to this discussion by exposing the main components

of a database management system that have impact in the performance of a DBMS.

Table 1 summarizes the main performance issues identified by most predominant

authors in this field.

Table 1. Summary of the main identified performance issues

Performance issues
Z i a u d d i n

et al. [16]

P a v l o,

P a u l s o n

and

R a s i n

[17]

C o r l a t a n

et al. [18]

S l a s h a

and

B o n n e t

[15]

P o n s

[19]

Concurrency control and

bottlenecks
 × × ×

Execution plan × × × × ×

Indexing × × × ×

Programming model and

language
 ×

Recovery and logging ×

 120

Concurrency control is a process to ensure that data is updated correctly and

appropriately when multiple transactions are concurrently executed in DBMS [20].

In general, concurrency control is an essential part of a DBMS. It is a mechanism for

correctness when two or more database transactions that access the same data or data

set are executed concurrently with time overlap. When multiple transactions are

executed serially or sequentially, data is consistent in a database. However, if

concurrent transactions with interleaving operations are executed, some unexpected

data and inconsistent result may occur [15]. The concurrency control must also deal

and resolve deadlock situations in database environments. Deadlock refers to a

particular situation where two or more processes are each waiting for another to

release a resource, or more than two processes are waiting for resources in a circular

chain [21]. Deadlock is typically a common problem in multiprocessing where many

processes share a specific type of mutually exclusive resource. P o n s [19] establishes

three types of deadlocks:

 Disk input/output (i/o) bottlenecks – i/o operations require read/write disk

drive heads to physically move across the drive platters, potentially incurring a

significant time penalty in the process;

 Central Processing Unit (CPU) bottlenecks – occur when too many resources

compete for computer processing time at once;

 Random Access Memory (RAM) bottlenecks – RAM, like the CPU, is a

physical resource of the server itself and, therefore, any other processes running on

the server will take away from the amount of RAM available to the database system.

Execution plan is considered by all identified authors as the main performance

issue related to database performance. The performance of SQL statements depends

heavily on the optimality of execution plans generated by the query optimizer.

Z i a u d d i n et al. in [16] state that the query optimizer has the unenviable task of

generating efficient plans for SQL statements of varied characteristics: simple vs.

complex, lightweight vs. resource intensive, recursive vs. non-recursive. It must be

highlighted that the way an SQL statement is written affects the manner how hidden

implementation details are performed by the DBMS. P o n s [19] refers that poorly

constructed SQL is a major cause of database system performance degradation, and

usually is one of the first factors addressed in performance tuning.

Indexing process intends to enhance the performance of select statements

against a database table. When missing indexing of a table, the system has to make

full table scan in order to find the searchable item. This leads to overloading RAM

and CPU, thus considerably increasing the execution time of a query. However, the

use of queries in all attributes of a table may not be considered a feasible solution.

Since indexes must be modified to reflect table changes, their use incurs a significant

amount of time overhead. The definitions of indexes on tables will typically slow

down the database system as inserts and updates are performed. In order to deal with

this issue, DataBase Administrator (DBA) must continuously monitor DBMS

performance statistics to re-evaluate the creation and deletion of indexes [22].

Programming model and language is also referred by P a v l o, P a u l s o n and

R a s i n in [17] as a factor that affects the database performance. In fact, programs in

high-level languages, such as SQL, are easier to write, modify and understand. On

 121

the other hand, when adopting procedural languages, such as C/C++ or Java,

describing tasks in a declarative language like SQL can be challenging. Additionally,

each language has its own approach to embed static SQL statements. As a

consequence, the performance of an application is not only affected by the SQL code,

but also includes the SQL embedded process adopted by the programming language.

Recovery and logging are mentioned by S h a s h a and B o n n e t [15] as a

complementary factor in concurrency control that affects the database performance.

The recovery process consists of an integrated physical and logical recovery

mechanism that protects database integrity in case of hardware and software failure,

such as deadlock situations. Furthermore, P r a t t and L a s t in [23] state that

deadlock handling involves the adoption of detection techniques, prevention

mechanisms and avoidance schemes.

Finally, the optimization process must take into account the various factors in a

system that determines its response time. T i w a r i [24] advocates that performance

analysis should consider all technological infrastructure (e.g., CPU, disk, network,

I/O), since very often performance problems can be in the network response capacity

and not in the database response time.

2.2. Optimization techniques in Oracle PL/SQL

Procedural Language/Structured Query Language (PL/SQL) is Oracle Corporation’s

procedural language extension to SQL. H e l l s t r ö m [25] advocates that one of the

main reasons why PL/SQL is so important in the context of application database

environments is that SQL itself doesn't offer a robust construction to apply logical

processing to DML statements. Due to this limitation of SQL, the PL/SQL has

emerged as an important programming language that lets programmers to access

common 3GL constructs such as conditional blocks, loops and exceptions. O r a c l e

[26] summarizes the main benefits of using the PL/SQL programming language with

an Oracle database, namely in terms of: (i) integration of procedural constructs with

SQL; (ii) modularized program development; (iii) improved performance;

(iv) integration with Oracle tools; (v) portability; and (vi) exception handling.

The central purpose of PL/SQL is to provide a portable, fast, easy way to write

and execute SQL against an Oracle database. Oracle PL/SQL has been used in several

applications that require data-intensive analysis [27-29]. P o l j a k, P o s c i c and

J a k s i c [30] identify some of the main advantages of an Oracle database when

compared to other relational databases, unleashing its robustness, reliability and

performance optimization for large data volume. Oracle uses two engines to process

PL/SQL code: all procedural code is handled by the PL/SQL engine; while all SQL

code is handled by the SQL statement executor or SQL engine. There is an overhead

associated with each context switch between the two engines [31]. Therefore, goals

are simply straightforward by reducing the number of context switches in order to

improve the performance [32]. For that, Oracle offers three additional PL/SQL

statements: (i) Bulk Collect; (ii) Forall; and (iii) Returning.

 122

2.2.1. Bulk collect

Bulk processing features of PL/SQL change the way the PL/SQL engine

communicates with the SQL layer. Bulk binds can improve the performance when

loading collections from queries. The Bulk Collect construct binds the output of the

query to the collection. When PL/SQL processes this statement, the whole collection,

instead of each individual collection element, is sent to the database server for

processing [33]. Bulk binds also allow similar DML statements to be executed with

one call instead of requiring a separate call for each. G u p t a [34] emphasizes the

importance of bulk binds in business scenarios where several cursors are loaded with

hundreds, thousands or millions of records causing significant degradations in the

performance of web applications.

2.2.2. Forall

The Forall construct allows the user to gain the same type of efficiency offered by

BULK COLLECT when performing write operations. This construct packages up

multiple write statements and sends them off to the Oracle Database in a single

message, increasing the overall performance of the operation [35]. The Forall is

usually much faster than an equivalent For or While loop [31].

2.2.3. Returning

One of the characteristic operations in an IT application is the need to check whether

the data sent to the database has actually been saved. Thus, typically, the developers

execute a new query to the database to verify the correct insertion of the information

[36]. However, this approach necessarily has performance costs that can be avoided.

The Returning statement increases the performance by allowing the prompt return in

column the “Insert”, “Update” and “Delete” instructions. This also eliminates the

need of using a “Select” statement to get the content of a given table. By default,

programmers can use this clause only when operating on exactly one row. However,

when using bulk SQL, they can use the form Returning Bulk Collect Into to store the

results in one or more collections [31].

3. Methodology

Quantitative research techniques were adopted in order to study the performance of

Oracle relational databases. Quantitative research method is characterized as a

systematic approach of investigation during which numerical data are observed,

collected, transformed and analyzed by the researcher [37-38]. This approach tries to

find evidences that could support or contradict an idea or hypothesis [39].

The adopted quantitative methodology is composed by four steps:

1. Determine the basic question that is intended to be answered with the

research study. In our study, we want to determine whether the optimization

techniques provided by PL/SQL (Forall, Returning and Bulk Collect) improve the

performance in an Oracle database.

2. Identify variables, measures, and the research design to use in formulating

the research question. In our work, we adopted a relational model composed by just

 123

one table (TestTable) containing one attribute of integer type. Moreover, we define

three test scenarios and, for each scenario, we change the number of records in the

database (from 1000 to 1,000,000), and we measure the average time of five

execution attempts in order to decrease the volatility of memory management policies

and CPU utilization.

3. Choose statistical analysis tools for analyzing the data collected. In our study

we adopted Stata Software v13.0 in order to perform a statistical analysis of the data.

4. Interpretation of the results of the analysis based on the statistical

significance determined. In our work, the interpretation of results is done by looking

for the hypothesis testing and also considering the literature review in the field.

The first scenario (Scenario I, Table 2) considers the process of writing data in

an Oracle database. For that, we initially start by cleaning all the existence records in

the database and we create a new table of integers that contains values from 1 up to

N (number of records). Then, in SA1 approach we use a traditional for loop to insert

values in the database; Forall approach inserts the same elements using a Forall loop.

Table 2. PL/SQL code for Scenario I

Standard Approach 1 (SA1) Forall Approach

DECLARE

 type v_type_a IS TABLE OF Integer index by

binary_integer;

 v_a v_type_a;

 timeStart TIMESTAMP;

 timeEnd TIMESTAMP;

BEGIN

 DELETE FROM TestTable;

 For i In 1..1000

 Loop

 v_a(i):=i;

 End Loop;

 timeStart := SYSTIMESTAMP;

 FOR i in 1..v_a.count

 LOOP

 Insert into TestTable values (v_a(i));

 END LOOP;

 timeEnd := SYSTIMESTAMP;

 dbms_output.put_line(timeEnd-timeStart);

END;

DECLARE

 type v_type_a IS TABLE OF Integer index by

binary_integer;

 v_a v_type_a;

 timeStart TIMESTAMP;

 timeEnd TIMESTAMP;

BEGIN

 DELETE FROM TestTable;

 For i In 1..1000

 Loop

 v_a(i):=i;

 End Loop;

 timeStart := SYSTIMESTAMP;

 FORALL i in 1..v_a.count

 Insert into TestTable values (v_a(i));

 timeEnd := SYSTIMESTAMP;

 dbms_output.put_line(timeEnd-timeStart);

END;

The second scenario (Scenario II, Table 3) considers the process of writing and

immediately reading data from an Oracle database. For that, and like in the

Scenario I, we start by creating a new table of integers and, then, we write the data in

the database. Finally, we extract these data by using a loop cursor (SA2 approach)

and using the returning instruction (Returning approach).

 124

Table 3. PL/SQL code for Scenario II

Standard Approach 2 (SA2) Returning Approach

 DECLARE

 type v_type_a IS TABLE OF Integer index by

binary_integer;

 v_a v_type_a;

 l_tab v_type_a;

 i integer;

 i_rec integer;

 timeStart TIMESTAMP;

 timeEnd TIMESTAMP;

 Cursor c1 IS Select * from TestTable;

BEGIN

 DELETE FROM TestTable;

 For i In 1..1000

 Loop

 v_a(i):=i;

 End Loop;

 timeStart := SYSTIMESTAMP;

 FOR i in 1..v_a.count

 LOOP

 Insert into TestTable values (v_a(i));

 END LOOP;

 Open c1;

 FETCH c1 INTO i_rec;

 WHILE c1%FOUND

 LOOP

 FETCH c1 INTO i_rec;

 i:=i+1;

 End Loop;

 Close c1;

 timeEnd := SYSTIMESTAMP;

 dbms_output.put_line(timeEnd-timeStart);

 END;

DECLARE

 type v_type_a IS TABLE OF Integer index by

binary_integer;

 v_a v_type_a;

 l_tab v_type_a;

 j integer;

 timeStart TIMESTAMP;

 timeEnd TIMESTAMP;

BEGIN

 DELETE FROM TestTable;

 For i In 1..1000

 Loop

 v_a(i):=i;

 End Loop;

 timeStart := SYSTIMESTAMP;

 FORALL i in 1..v_a.count

 Insert into TestTable values (v_a(i))

 RETURNING a BULK COLLECT INTO

l_tab;

 timeEnd := SYSTIMESTAMP;

 dbms_output.put_line(timeEnd-timeStart);

END;

The third scenario (Scenario III, Table 4) considers the process of reading data

from an Oracle database. For that, we initially start by declaring a new cursor that

will read all data from TestTable. Then, we read the data by using a loop cursor (SA3

approach) and using the bulk collect approach. In this last approach all the content of

the database is immediately stored in a table, which content is read in the client side

using a for loop.

The tests were performed in three laptops with Intel Core 2.50 GHz processors

and 8 GB of RAM. The operating system was different for each machine:

Windows 8.1 Professional, Windows 10 Home Edition and Linux – Ubuntu 15.10 64

bits, using Oracle Database 11g Release 2 as DBMS.

 125

Table 4. PL/SQL code for Scenario III

Standard Approach 3 (SA3) Bulk Collect Approach

 DECLARE

 type v_type_a IS TABLE OF Integer index by

binary_integer;

 v_a v_type_a;

 l_tab v_type_a;

 i_rec integer;

 timeStart TIMESTAMP;

 timeEnd TIMESTAMP;

 i integer;

 Cursor c1 IS Select * from TestTable;

BEGIN

 i:=0;

 timeStart := SYSTIMESTAMP;

 Open c1;

 FETCH c1 INTO i_rec;

 WHILE c1%FOUND

 LOOP

 FETCH c1 INTO i_rec;

 i:=i+1;

 End Loop;

 Close c1;

 timeEnd := SYSTIMESTAMP;

 dbms_output.put_line(timeEnd-timeStart);

 dbms_output.put_line('Number of records:' || i);

 END;

DECLARE

 type v_type_a IS TABLE OF

TestTable%ROWTYPE index by

binary_integer;

 v_a v_type_a;

 j integer;

 timeStart TIMESTAMP;

 timeEnd TIMESTAMP;

 Cursor c1 IS Select * from TestTable;

BEGIN

 timeStart := SYSTIMESTAMP;

 Open C1;

 Fetch c1 BULK COLLECT INTO v_a;

 For i In 1..v_a.count

 Loop

 j:=j+1;

 End Loop;

 Close c1;

 timeEnd := SYSTIMESTAMP;

 dbms_output.put_line(timeEnd-timeStart);

END;

4. Results and discussion

Table 5 shows the average measured time for the three considered scenarios:

Scenario I – Write Data, Scenario II – Write & Read Data, and Scenario III – Read

Data. For each scenario, we measured the time, in milliseconds (ms), using a standard

approach and adopting the optimization techniques provided by Oracle (Forall,

Returning and Bulk Collect).

Table 5. Comparative analysis of the average execution time

N

Scenario I – Write Data
Scenario II – Write &

Read Data
Scenario III – Read Data

SA1 Forall SA2 Returning SA3
Bulk

Collect

1000 61.80 1.13 65.73 52.73 11.33 3.33

5000 284.33 4.00 312.40 225.47 37.20 3.47

10,000 547.20 7.33 620.93 451.73 64.00 6.40

50,000 2466.33 36.07 3072.00 2242.07 299.87 21.40

100,000 6203.93 69.33 5702.20 4505.33 600.80 38.07

500,000 26565.13 357.53 30815.73 24603.80 2593.87 174.67

1,000,000 56381.60 1112.13 62744.20 51884.67 5150.13 341.87

 126

A comparative graphical analysis regarding the evolution of the execution time

in milliseconds (y axis) along the increment of the number of records (x axis) is

depicted in Fig. 1.

Fig. 1. Graphical comparative analysis for three scenarios

The adoption of optimization techniques provided by Oracle doesn’t have the

same impact for all scenarios. The use of Forall instruction decreases significantly

the total execution time. On the other hand, adoption of Returning and Bulk Collect

instructions don’t have the same impact on the total execution time.

4.1. Scenario I – write data

The adoption of the Forall instruction brings significant benefits in terms of runtime.

These benefits are greater as long the value of N is increased. For a small N (N=1000)

the average execution time decreases from 61.80 ms to 1.13 by using Forall, which

represents a difference of 60.67 ms. However, this difference increases significantly

for more than 55,000 ms, when N is equal to 1 million of records. The variance and

standard deviation also follow a similar pattern of behavior to the average, and its

value increases with N. However, when we calculate the growth rate of the average

execution time of both approaches, we reach to the conclusion that this value is 0.06%

for SA1 and 0.07% for Forall. Therefore, it can be concluded that as N increases the

growth of execution time in percentage is similar for both approaches.

Table 6 presents the hypothesis test conducted for Scenario I.

It is possible to verify that p-values from t-score and f-score are in all cases lower

than 0.00001. In this way, if we consider a significance level of 5% (0.05), these

results indicate a strong evidence against the null hypotheses. Therefore we reject the

null hypothesis and it is possible to conclude that the execution time is lower using

the Forall instruction.

700.00

600.00

500.00

400.00

300.00

200.00

100.00

0.00

0.00

 127

Table 6. Hypothesis test for Scenario I

N Approach t-score f-score

p-value

from

t-score

p-value

from f-ratio

(ANOVA)

95% Conf. interval

Min Max

1000
SA1

7.6513 7.60×103 < 0.00001 < 0.00001

44.80 78.80

Forall 0.94 1.33

5000
SA1

7.9825 2.20×104 < 0.00001 < 0.00001

209.16 359.91

Forall 3.49 4.51

10,000
SA1

7.9985 1.20×104 < 0.00001 < 0.00001

402.44 691.96

Forall 6.02 8.65

50,000
SA1

5.5486 1.90×104 < 0.00001 < 0.00001

1526.94 3405.72

Forall 29.26 42.87

100,000
SA1

9.9646 1.10×104 < 0.00001 < 0.00001

4874.17 7509.70

Forall 56.74 81.93

500,000
SA1

9.8408 5.00×103 < 0.00001 < 0.00001

20853.81 32276.46

Forall 276.95 438.12

1,000,000
SA1

10.7063 728.044 < 0.00001 < 0.00001

45317.13 67446.07

Forall 702.07 1522.2

4.2. Scenario II – write data & read data

The executed tests confirm a minor improvement by the adoption of Returning

instruction. The difference between two approaches is not so relevant like in

Scenario I. For instance, the difference between two means is only 13 ms for N equal

to 1 thousand, and increases to more than 10,000 ms for N equal to 1 million. It is

possible to check a similar behavior for variance and standard derivation. The growth

rate of the average execution time of both approaches is similar (0.06% for SA2 and

0.07% for Returning). Other relevant aspect that could be highlighted is that all

measured values are between the smallest and largest for both approaches. This

situation happens because tests were performed in three machines with different

operating systems.

Table 7 presents the hypothesis test conducted for Scenario II.

It is possible to verify that the hypothesis is inconclusive in order to

determine the behavior of the mean and variance. The p-value from t-score is

only 3/7 (three in seven situations) lower than the significance level of 0.05.

ANOVA values are also similar and only 1/7 (one in seven situations) is lower

than the significance level of 0.05. Therefore, we cannot reject the null

hypothesis and it is not possible to conclude that the execution time and

variances are different.

 128

Table 7. Hypothesis test for Scenario II

N Approach t-score f-score

p-value

from

t-score

p-value

from

f-ratio

(ANOVA)

95% Conf. Interval

Min Max

1000
SA2

1.1744 1.2548 0.125063 0.338454

48.02 83.45

Returning 36.92 68.54

5000
SA2

1.8661 2.3728 0.036267 0.058831

228.60 396.20

Returning 171.06 279.87

10,000
SA2

1.8453 2.3005 0.037797 0.065502

456.75 785.65

Returning 343.31 560.16

50,000
SA2

1.8498 2.3338 0.037462 0.062332

2266.88 3877.12

Returning 1715.04 2769.09

100,000
SA2

1.3463 2.5135 0.094502 0.047886

4089.53 7314.87

Returning 3488.14 5522.53

500,000
SA2

1.5401 2.0931 0.067381 0.089677

23699.46 37932.01

Returning 19684.96 29522.64

1,000,000
SA2

1.3416 1.8627 0.095253 0.12834

48740.01 76748.53

Returning 41623.67 62145.66

4.3. Scenario III – read data

The adoption of Bulk Collect operation brings also significant benefits in terms of

runtime. This benefits increases with the value of N. For a small N (N=1000) the

average execution time decreases from 11.33 ms to 3.33 ms by using Bulk Collect,

which represents a difference of 8 ms. However, this difference increases

significantly for more than 4800 ms, when N is equal to 1 million of records. The

variance and standard derivation are also lower when adopting the Bulk Collect

approach. The growth rate of the average execution time of both approaches is similar

to both scenarios (0.05% for SA3 and 0.04% for Bulk Collect), but decreased when

compared to Scenario I (Table 8).

Table 8. Comparative growth rate for three scenarios

Growth Rate

Scenario I Scenario II Scenario III

SA1 Forall SA2 Returning SA3 Bulk Collect

0.06% 0.07% 0.06% 0.07% 0.05% 0.04%

In this phase is also relevant to analyze the comparative behavior of Forall

(Scenario I) and Bulk Collect (Scenario III). Descriptive statistics of both scenarios

are given in Table 9.

 129

Table 9. Comparative analysis between scenarios I and III (descriptive statistics)

Forall Bulk Collect

Obs. 105 Obs. 105

Mean 226.791 Mean 84.171

Std. Dev. 471.744 Std. Dev. 121.669

Variance 222542.7 Variance 14803.45

Skewness 3.409 Skewness 1.428

Kurtosis 16.547 Kurtosis 3.641

The minimum execution value times are equal for both scenarios, but

significantly different when looking for maximum values (it is bigger in case of

Forall). In fact, there is no difference also for quartile 1. However, the differences start

to appear for median and quartile 3. This situation can be easily verified looking for

the box plot representation (Fig. 2). The variance and standard derivation are also

lower for Bulk Collect scenario.

Fig 2. Box plot representation of forall and Bulk Collect Scenarios

Finally, Table 10 presents the hypothesis test conducted for Scenario III. It is

possible to verify that p-values from t-score and f-score are in all situations lower than

the significance level of 0.05. These results indicate strong evidence against the null

hypotheses, and let us conclude that the execution time/variance averages are lower

using the Bulk Collect approach.

0 1,000 2,000 3,000

Forall Bulk Collect

 130

Table 10. Hypothesis test for Scenario III

N Approach t-score f-score

p-value

from

t-score

p-value

from f-ratio

(ANOVA)

95% conf.

Interval

Min Max

1000
SA3

5.0326 14.0189 0.000013 < 0.00001

8.04 14.63

Bulk Collect 2.45 4.21

5000
SA3

8.6577 88.2201 < 0.00001 < 0.00001

28.89 45.51

Bulk Collect 2.58 4.35

10,000
SA3

8.88 104.6890 < 0.00001 < 0.00001

50.15 77.85

Bulk Collect 5.05 7.75

50,000
SA3

8.6506 549.0691 < 0.00001 < 0.00001

230.89 368.85

Bulk Collect 18.46 24.34

100,000
SA3

8.5196 688.4231 < 0.00001 < 0.00001

459.24 742.36

Bulk Collect 32.67 43.46

500,000
SA3

6.835 2.6000×103 < 0.00001 < 0.00001

1834.88 3352.85

Bulk Collect 159.83 189.50

1,000,000
SA3

6.7639 3.4000×103 < 0.00001 < 0.00001

3625.69 6674.58

Bulk Collect 315.7 368.03

5. Conclusion

Bulk binds (e.g., Forall, Returning, and Bulk Collect) are PL/SQL techniques where,

instead of multiple individual SQL statements (e.g., Select, Insert, Update, or Delete),

it guarantees that all of the operations are carried out at once, in bulk. This avoids the

context switching between the SQL engine and PL/SQL engine. These optimization

techniques can be relatively easy to implement and have the advantage to increase the

performance in Oracle relational databases.

The tests performed in the Oracle relational database let us conclude that Forall

and Bulk Collect instructions bring significant benefits in term of execution time. In

fact, the use of these two approaches decreased the average execution time and

variance. Additionally, it was possible to conclude that the growth rate of the average

execution time is lower for Bulk Collect instruction than Forall approach. This

difference has impact when the number of records in the database increases. Finally,

the tests performed revealed that there aren’t significant statistical benefits by the use

of Returning.

Some limitation of this work can also be emphasized. Firstly, we only use integer

values in our tests. Therefore, it is not proven that the behavior of optimization

PL/SQL techniques will remain the same, if we use other data types such as varchar,

date/time or records. Secondly, since the execution time of some tests is low for a

small number of records, the overall result is influenced by memory buffers that can

represent a bottleneck in most database operations.

 131

R e f e r e n c e s

1. B l a h e t a, R., K. G e o r g i e v, O. J a k i, R. K o h u t, S. M a r g e n o v, J. S t a r y. High

Performance Computing in Micromechanics with an Application. – Cybernetics and

Information Technologies, Vol. 17, 2017, No 5, pp. 5-16.

https://doi.org/10.1515/cait-2017-0050

2. D i m i t r o v, D., E. A t a n a s s o v. Accounting Services for Heterogeneous Computing Resources.

– Cybernetics and Information Technologies, Vol. 17, 2017, No 5, pp. 81-88.

https://doi.org/10.1515/cait-2017-0057

3. H e l l e r s t e i n, J., M. S t o n e b r a k e r, J. H a m i l t o n. Architecture of a Database System. –

Foundations and Trends in Databases, Vol. 1, 2007, No 2, pp. 141-259.

https://doi.org/10.1561/1900000002

4. F e u e r l i c h t, G. Database Trends and Directions: Current Challenges and Opportunities. – In:

J. Pokorný, V. Snásel, K. Richta, Eds. Dataeso. 2010, pp. 163-174.

CEUR-WS.org.

5. M o n i r u z z a m a n, A., S. H o s s a i n. NoSQL Database: New Era of Databases for Big Data

Analytics – Classification, Characteristics and Comparison. – International Journal of

Database Theory and Application, Vol. 6, 2013, No 4, pp. 1-14.

6. N a y a k, A., A. P o r i y a, D. P o o j a r y. Type of NOSQL Databases and Its Comparison with

Relational Databases. – International Journal of Applied Information Systems (IJAIS), Vol. 5,

2013, No 4, pp. 16-19.

https://doi.org/ 10.5120/ijais12-450888

7. D a m e s h a, H. Object Oriented Database Management Systems-Concepts, Advantages,

Limitations and Comparative Study with Relational Database Management Systems. – Global

Journal of Computing Science and Technology: Software & Data Engineering, Vol. 15, 2015,

No 3, pp. 1-9.

8. L i u, H. Oracle Database Performance and Scalability: A Quantitative Approach. Wiley-IEEE

Computer Society, New Jersey, 2011.

9. F e u e r s t e i n, S., B. P r i b y l. Oracle PL/SQL Programming. Sebastopol, O’Reilly Media, 2014.

10. D a r w e n, H. An Introduction to Relational Database Theory. London, Bookboon, 2010.

11. S i l b e r s c h a t z, A., H. K o r t h. Database System Concepts. Columbus, McGraw-Hill Education,

2010.

12. G r e e n w a l d, R., R. S t a c k o w i a k, J. S t e r n. Oracle Essentials – Oracle Database 11g.

Sebastopol, O’Reilly Media, 2008.

13. M e d h i, S., H. B a r u a h. Relational Database and Graph Database: A Comparative Analysis. –

Journal of Process Management and New Technologies, Vol. 5, 2017, No 2, pp. 1-9.

https://doi.org/ 10.5937/jouproman5-13553

14. C o l l e y, D., C. S t a n i e r. Identifying New Directions in Database. – Performance Tuning,

Vol. 121, 2017, pp. 260-265.

https://doi.org/10.1016/j.procs.2017.11.036

15. S h a s h a, D., P. B o n n e t. Database Tuning: Principles, Experiments, and Troubleshooting

Techniques. Burlington, Morgan Kaufmann Publishers, 2002.

16. Z i a u d d i n, M., D. D a s, H. S u, Y. Z h u, K. Y a g o u b. Optimizer Plan Change Management:

Improved Stability and Performance in Oracle 11g. – In: Proc. of PVLBD’08 Conference,

Auckland, New Zealand, 2008, pp. 1346-1355.

17. P a v l o, A., E. P a u l s o n, A. R a s i n. A Comparison of Approaches to Large-Scale Data Analysis.

– In: Proc. of PVLBD’09 Conference, New York, USA, 2009, pp. 165-178.

18. C o r l a t a n, C. M. L a z a r, V. L u c a, O. P e t r i c i c a. Query Optimization Techniques in

Microsoft SQL Server. – Database Systems Journal, Vol. 5, 2014, No 2, pp. 33-48.

19. P o n s, A. Database Tuning and Its Role in Information Technology Education. – Journal of

Information Systems Education, Vol. 14, 2003, No 4, pp. 381-387.

20. C o n n o l l y, T., C. B e g g. Database Systems: A Practical Approach to Design, Implementation,

and Management. New York, Pearson Education, 2014.

21. C o r o n e l, C., S. M o r r i s. Database Systems: Design, Implementation, & Management. New

Hampshire, Cengage Learning, 2018.

 132

22. M u l l i n s, C. Database Administration: The Complete Guide to DBA Practices and Procedures.

Boston, Addison-Wesley Professional, 2012.

23. P r a t t, P., M. L a s t. Concepts of Database Management. New Hampshire, Cengage Learning,

2014.

24. T i w a r i, V. Oracle Performance Tuning (for Oracle DBAs). – International Journal of Human

Computer Interaction and Data Mining, Vol. 1, 2018, No 1-2, pp. 30-36.

25. H e l l s t r ö m, I. Oracle SQL & PL/SQL Optimization for Developers Documentation. Oracle

Media Networks. Retrieved 10 November 2017.

https://media.readthedocs.org/pdf/oracle/latest/oracle.pdf
26. O r a c l e. Benefits of PL/SQL. Oracle Academy. Retrieved 22 November 2017.

http://web.cerritos.edu/hohly/SitePages/Oracle/PL_SQL/PLSQL_course_materials%20

6_07/PLSQL_s01_l02.pdf
27. B i s s e t, K., J. C h e n, S. D e o d h a r, X. F e n g, Y. M a, M. M a r a t h e. Indemics: An Interactive

High-Performance Computing Framework for Data Intensive Epidemic Modeling. – ACM

Transaction on Modelling and Computer Simulation, Vol. 24, 2014, No 1, pp. 1-54.

https://dx.doi.org/10.1145%2F2501602
28. K a u l a, R. Operational Intelligence through Performance Trends: An Oracle Prototype. –

International Journal of Business Intelligence and Systems Engineering, Vol. 1, 2017, No 2,

pp. 140-165.

https://doi.org/10.1504/IJBISE.2017.088686

29. A l m e i d a, F., J. M o n t e i r o, J. F e r r e i r a. Building an Effective Data Warehousing for

Financial Sector. – Automatic Control and Information Sciences, Vol. 3, 2017, No 1,

pp. 16-25.

http://dx.doi.org/10.12691/acis-3-1-4

30. P o l j a k, R., P. P o s c i c, D. J a k s i c. Comparative Analysis of the Selected Relational Database

Management Systems. – In: Proc. of International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO’17), Opatija, 2017,

pp. 1496-1500.

https://doi.org/ 10.23919/MIPRO.2017.7973658

31. A l m e i d a, F. Developing Effective PL/SQL. Palo Alto, ISSUU Publishing, 2016.

32. F e u e r s t e i n, S. The Best of Oracle PL/SQL: Must Know Features, Best Practices and New

Features in Oracle Database 11g. Toad World. Retrieved 21 December 2017.

https://stage.toadworld.com/cfs-file/__key/communityserver-wikis-components-files/00-

00-00-00-03/Best-of-Oracle-PLSQL-11g.pdf
33. F e u e r s t e i n, S., B. P r i b y l, C. D a w e s. Oracle PL/SQL Language: Pocket Reference.

Sebastopol, O’Reilly Media, 2008.

34. G u p t a, S. Advanced Oracle PL/SQL Developer’s Guide. Birmingham, Packt Publishing, 2016.

35. G r e e n w a l d, R., R. S t a c k o w i a k, G. D o d g e, D. K l e i n, B. S h a p i r o, C. C h e l l i a h.

Professional Oracle Programming. New Jersey, Wrox, 2005.

36. C a m p b e l l, L., C. M a j o r s. Database Reliability Engineering: Designing and Operating

Resilient Database Systems. Newton, Massachusetts, O’Reilly Media, 2017.

37. M a r t i n, W., K. B r i d g m o n. Quantitative and Statistical Research Methods: From Hypothesis

to Results. London, Jossey-Bass, 2012.

38. C r e s w e l l, J. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. New

York, SAGE Publications, 2013.

39. Q u e i r ó s, A., D. F a r i a, F. A l m e i d a. Strengths and Limitations of Qualitative and

Quantitative Research Methods. – European Journal of Education Studies, Vol. 3, 2017, No 9,

pp. 369-387.

https://doi.org/10.5281/zenodo.887089

Received: 04.04.2018; Second Version: 04.05.2019; Accepted: 14.05.2019

https://media.readthedocs.org/pdf/oracle/latest/oracle.pdf
http://web.cerritos.edu/hohly/SitePages/Oracle/PL_SQL/PLSQL_course_materials%206_07/PLSQL_s01_l02.pdf
http://web.cerritos.edu/hohly/SitePages/Oracle/PL_SQL/PLSQL_course_materials%206_07/PLSQL_s01_l02.pdf
https://stage.toadworld.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-00-03/Best-of-Oracle-PLSQL-11g.pdf
https://stage.toadworld.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-00-03/Best-of-Oracle-PLSQL-11g.pdf

