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Abstract: With the continuous increase of international oil prices, more and more 

shipping companies look for new solutions to the ever present question: How to 

reduce operational fuel consumption and decrease air pollution. Ship route planning 

is an indispensable part of the ship navigation process. In the modern world, the 

passage planning aspect of navigation is shifting. No longer do we see mariners 

drawing course lines on a paper chart. No longer do they calculate distances with 

compasses. Elaborate algorithms on various digital devices perform all these tasks. 

Algorithms plot the optimum tracks on digital charts and algorithms can decide how 

to avoid collision situations. Nowadays charter companies do not rely solely on the 

experienced navigators on board their vessels to decide the best route. Instead, this 

task is outsourced ashore to routing and weather-routing enterprises. The algorithms 

used by those enterprises are continuously evolving and getting better and better. 

They are coming popular because of another reason – more and more the shipping 

society support the newly idea for using crewless ships. However, are they up to the 

task to eliminate the human element in passage planning? In this article, we are going 

to review some of the weak points of the algorithms in use.  

Keywords: Information technologies in shipping, cybernetic decisions, evolutionary 

algorithm, safety of navigation. 

1. Introduction 

Safety in shipping is a priority task regardless of the time and technology 

development. Many researchers are attempting to use different mathematical 

algorithms that adapt to shipping conditions. Modern information and computing 

technologies make it possible to implement any scientific idea. A. K u m a r ,   

D. K u m a r, and S. J a r i a l  [1] have analysed a number of algorithms and the 

possibilities for their application in solving data clustering problems. Their study 

presents an in-depth study of swarm intelligence techniques and is an example of a 

research approach to the algorithms used in other scientific fields. 
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Nowadays in the shipping a new breed of algorithms is emerging – the 

Evolutionary Algorithms (EAs). As B a l a b a n o v, Z a n k i n s k i  and B a r o v a  [2] 

have noted EAs are applied successfully in finding acceptable solutions to problems 

in business, engineering, and science.  

The common underlying idea behind the evolutionary algorithms is the same as 

in the evolutionary processes in nature: Given a population of individuals, the 

environmental pressure causes natural selection (survival of the fittest) and this 

causes a rise in the fitness of the population [3]. 

The idea of applying the principles of Neo-Darwinism for automatic problem 

solving emerged in the 30s of the 20th century [4]. In the 60s and 70s, several 

scientists developed different applications of the main ideas at the same time. In the 

United States, Vogel, Owens and Walsh present evolutionary programming [5], while 

Holland calls its method a genetic algorithm [6]. At the same time, in Germany, 

Rahlenberg and Schweifel create theirs evolutionary strategies [7]. In the next two 

decades, these areas have evolved separately, but since the 90s, they have begun to 

perceive themselves as different representatives of a technology called evolutionary 

computing. 

Given a quality function to be maximized, a set of candidate solutions can be 

randomly created and the quality function as an abstract fitness measure can be 

applied. Based on this fitness, some of the better candidates are chosen to seed the 

next generation by applying recombination and/or mutation to them [9].  

Evolutionary Algorithms (from here on referenced as EAs) are algorithms that 

can perform optimization tasks and have the inherent ability to evolve. In general, 

they have three main characteristics:  

 Population-based. EAs support a selection of solutions, called a population, 

to optimize the problem. The population is a basic principle of the evolutionary 

process. 

 Fitness-oriented. Every solution in a population is called an individual. Every 

individual has its gene representation, called its code, and performance evaluation, 

called its fitness value. EAs choose fitter individuals, and that is the foundation of the 

optimization and convergence of the algorithms. 

 Variation-driven. Individuals will sustain a number of variations to imitate 

genetic changes, which is the basis for searching the solution space. 

EAs, applied for ship passage planning, can be divided into three types: 

 Genetic,  

 Ant Colony Algorithms,  

 Particle Swarm Algorithms. 

In this article, we will look more closely into the first type of algorithms – the 

genetic evolutionary algorithms. 

2. Genetic evolutionary algorithms – brief overview 

Evolution via natural selection of a randomly chosen population of individuals can 

be thought of as a search through the space of possible chromosome values. In that 
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sense, a Genetic Evolutionary Algorithm (Genetic EAs) is a stochastic search for an 

optimal solution to a given problem. 

The evolutionary search process is influenced by the following main 

components of and EA: 

• An encoding of solutions to the problem as a chromosome; 

• A function to evaluate the fitness of the individuals; 

• Setup of the initial population; 

• Selection operators; 

• Reproduction operators. 

Evolutionary algorithms can be used for both weather routing and collision 

avoidance. However, Genetic EAs can be particularly effective in collision avoidance 

situations and in plotting the safe passage through coastal waters. An example of that 

are the works of  S z l a p c z y n s k i  [6], S z l a p c z y n s k i and S z l a p c z y n s k a  

[7], and G e o r g i e v a  [8]. Avoiding collision and choosing the shortest and safest 

path are two steps towards achieving higher energy efficiency. Moreover, the obvious 

question is: Are Genetic EAs ready to be implemented on board vessels?  

In the following section, some limitations and constraints to their immediate use 

for passage planning and collision avoidance will be reviewed. 

2.1. Limitations to Genetic EAs with regard to on-board use 

2.1.1. Issues with Automatic Identification System (AIS) 

When collecting input data, most EAs process the information from the AIS or the 

Automatic Radar Plotting Aid (ARPA). This is a good approach as ship motion 

parameters can be obtained directly from either system with a varying degree of 

accuracy. However, some algorithms may have the option to read out the type of ship 

from the AIS. Others may have the function to acquire the length of other vessels 

from the AIS. These functions are present so that an EA can determine the opponent 

ship’s domain in order to provide a safe passing. This approach, as convenient as it 

is, may lead either to an error in the solution provided by the algorithm or to its 

complete collapse. The reason for this is two-fold. Firstly when AIS targets are 

obtained by the AIS, at the beginning only the most relevant data is obtained, and that 

is the dynamic data: Target’s position, course and speed, which is transmitted every 

2-10 s (depending on ship’s speed and rate of turn). Static data is transmitted every  

6 minutes. Because of the time gap, an algorithm may provide an error in its solution 

if the target has just appeared. A good way to eliminate this problem would be for the 

algorithm to assume a default length of the vessel, until the target's attributes can be 

properly acquired. This proposal would also benefit from those vessels, which have 

not inputted any ship specific data in the AIS, such as small fishing boats, or vessels 

equipped with AIS type B. 

Another point for consideration, where algorithms provide the functionality of 

collision avoidance, should be made when the status of opponent vessels is different 

from “Under way using engine”. If a read-out of the AIS static data is introduced in 

the algorithm, it should be able to differentiate between the various navigational 

statuses and adjust the fitness function accordingly. In this way it will be benefiting 

individuals which violate the COLlision REGulations (COLREG) the least and 
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penalizing those which generate a solution, where own ship does not behave as a 

give-way vessel where it should. 

2.1.2. Issues with Electronic Chart Display and Information System (ECDIS) 

For an algorithm to work as intended, to avoid other ships and all navigational 

dangers, it must be able to acquire a proper interpretation of the area around the vessel 

effectively. In his research for the evolutionary computing and multi-trajectory, 

planning R. S z l a p c z y n s k i  [6] uses bitmaps, generated off vector maps in order 

to limit the time needed to process the vector maps as they consume too much time 

for data read-out. Such bitmaps are generated offline and stored on board, so they can 

be easily accessed when the algorithm is running in real time. 

This design may be considered ineffective because ECDIS worldwide are 

updated on a weekly basis. If a vessel uses bitmaps for the calculation purposes then 

either it must have the conversion software on board or it must have a very good 

internet connection in order to receive the bitmaps from a shore company. In either 

case, this is not an ideal solution because: 

• Having the software on board means that a good amount of time will be 

consumed for the new vector charts to be converted to bitmaps, thus newly updated 

cells cannot be used immediately. On top of that, distributing licensed software to all 

vessels in a company may turn out to be rather expensive. 

• Internet speed on board most trade vessels is still relatively slow. Thus 

dispatching big files to the vessel may turn out to be quite cumbersome. 

A more elegant solution would be to use an object’s attributes from the ECDIS. 

A new attribute can be included for each ECDIS object, which can define a value for 

a safe passing distance, depending on the danger that attribute represents. Values can 

range from 0 up to 10. Because vessels have varying design, the safe passing distance 

can be a function of the vessel’s Advance, with the value of the ECDIS object as a 

coefficient in a formula. 

For preliminary calculations, the following formulas can be used to calculate the 

Advance of a given ship. First, a steady tactical diameter (in ship lengths) has to be 

calculated as 

(1) 
STD

𝐿
= 4.19 − 203

𝐶𝐵

𝛿𝑅
+ 47.4

Trim

𝐿
−

13.0𝐵

𝐿
+

194

𝛿𝑅
− 35.8

Sp×Ch

𝐿×𝑇
(ST − 1) + 

+3.82
Sp×Ch

𝐿×𝑇
(ST − 2) + 7.79

𝐴𝐵

𝐿×𝑇
+ 0.7 (

𝑇

𝑇𝐿
− 1) (

𝛿𝑅

|𝛿𝑅|
) (ST − 1), 

where: 

STD  – Steady Turning Diameter, m; 

CB  – Block Coefficient; 

δR  – Rudder angle, degrees (positive to starboard); 

Trim  – static Trim, m; 

L – Length of the vessel, measured between perpendiculars, m; 

B – moulded Breadth, m; 

Sp – Span of rudder, m; 

Ch – mean Chord of rudder, m; 

T – design draft at full load, m; 

ST – Stern Type (1 – Closed, 2 – Open); 
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TL – draft, at which Turning circle is estimated, m; 

AB – submerged Bow profile Area, m2; 

(2) 
TD

𝐿
= 0.910

STD

𝐿
+ 0.424

Vs

√𝐿
+ 0.675, 

(3) 
Ad

𝐿
= 0.519

TD

𝐿
+ 1.33, 

where 

TD = Tactical Diameter, m; 

Vs = Vessel speed, in knots, 

Ad = Advance, in m [3]. 

The formula for safe distance around the vessel can be as follows: 

(4) SD =
Vs×Ad2×√Av

300
, 

where 

SD = Safe Distance, in nm, 

Vs = Vessel speed, knots; 

Ad = Advance, nm; 

Av = ENC Attribute safety value. 

For a given ship with the following characteristics: 

Length between perpendiculars, L,  349.8 m, 

Breadth molded, B, 58.3 m, 

Draft in full load, T, 19.4 m, 

Block coefficient, 0.875, 

Displacement, metric tons,  355,600, 

Speed, corresponding to 85% of engine output, Vs, 15 knots, 

Movable Rudder Area, AR, 164.8 m2, 

Rudder Chord, Ch, 10.8 m, 

Rudder Span, Sp, 15.2 m, 

Rudder deflection rate, rδ, 0.04 rad/s, 

Submerged Area of Bow profile, AB, 8 m2, 

Stern Type (1 – closed, 2 – open), ST, 1, 

Number or propellers,  1. 

Assuming rudder angle at 35o and no trim, the steady turning diameter in ship 

lengths will be 
STD

𝐿
= 2.408. 

And the tactical diameter and the advance (in ship lengths) will be 
TD

𝐿
= 3.206, 

Ad

𝐿
= 2.994, and Ad = 0.565 nm. 

Depths are already implemented as objects in an ENC and can be directly used 

by the algorithm. This solution could eliminate the above mentioned disadvantages 

using bitmaps. However at this moment, there is not a solution that can be deemed 

perfect since the direct read-out of the attributes may consume more time for 

calculations. Yet with the advancement in technology this particular disadvantage 

can be considerably mitigated. 
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Table 1. Table 1 and graph on Fig. 1 represent how the safety distance changes with the 

change of the vessel’s speed and with the increasing of the ENC safety value, in m 

Vessel 
  speed, knots   

Distans change, m 

1 2 3 4 5 6 7 8 9 10 

2 13 19 23 27 30 32 35 37 40 42 

4 53 76 93 107 120 131 141 151 160 169 

6 121 171 210 242 271 297 321 343 364 383 

8 217 307 376 435 486 532 575 615 652 687 

10 342 484 593 684 765 838 906 968 1027 1082 

12 497 703 860 994 1111 1217 1314 1405 1490 1571 

14 682 964 1181 1363 1524 1669 1803 1928 2045 2155 

16 897 1269 1554 1794 2006 2198 2374 2538 2692 2837 

18 1144 1618 1982 2289 2559 2803 3028 3237 3433 3619 

20 1424 2014 2466 2848 3184 3488 3767 4027 4272 4503 

22 1736 2455 3007 3472 3882 4253 4593 4911 5208 5490 

24 2082 2944 3606 4164 4655 5100 5508 5889 6246 6584 

 

 

Fig.1. Representation of how Safety distance changes comparatively to ship’s speed and ENC 

Safety value (in m) 
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2.1.3. The problem with ship domains 

Nowadays the problem with the development of ship domains is that they are single 

purposed. They only represent the safe distance around the vessel for passing a 

singular type of obstacle. Most commonly this obstacle is another ship, thus most 

ship domains are designed for safe passing with other vessels. There has been a lot 

of research on the subject of ship domains, but almost none have examined the idea 

of multiple ship domains overlaying each other. A very good solution would be to 

have three distinctive ship domains, each with its own shape and formula for 

determination. The three different domains will provide safe distances for three types 

of obstructions ‒ other vessels, small obstacles, such as buoys, and land and shoal 

areas. The domain shape is the other parameter that has not experienced a lot of 

changes recently. In his study of distribution of safe distances for other vessels [4] 

Lucjan Gucma discovers that in reality ship domains have a varying shape depending 

on the ship and circumstances. He analyzes the conduct of vessels near Germany and 

the distances at which they pass each other.  

His approach for determining ship domains makes them far more realistic and 

reliable. His research can be the ground work for the first layer of the formerly 

proposed 3-layer ship domain. This method or a similar one can also be used when 

determining the other two types of domains ‒ for single obstructions and for land and 

shoal areas. 

2.1.4. The issue of communication 

When utilizing EAs for collision avoidance, a vessel is provided with the optimal set 

of trajectories for all vessels involved. A complication arises when only the own 

vessel is equipped with EA software. In such a case the navigator will have available 

the optimum speed and course for all participating vessels, and will know for sure 

that those trajectories are the most accurate since an algorithm has defined them, but 

the officers on watch on the rest of the ships will not. They may have their own 

subjective opinion regarding the developing situation and will never know if their 

opinion is wrong or not, because they lack information about the future maneuvers 

of the other ships and they rely solely on their own experience. As the other 

navigators act on their own accord the evolutionary algorithm on the own ship 

becomes next to useless and will constantly provide contrasting solutions as the 

situation develops. 

It stands to reason that there must be a way for a vessel to communicate the 

results of its EA software to the vessels that do not possess any.  

One convenient structure for such a communication could be the maritime 

cloud. If all vessels involved are registered in the maritime cloud then they can easily 

overlay the optimum trajectories on ECDIS, the same way other vessels’ passage 

plans can be overlaid. 

The maritime cloud be used in an alternative way where the EA software can 

export the results as a user map or an image file, which can be uploaded to the cloud 

and referenced by the rest of the participants. A user map file can again be loaded 
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into ECDIS for easy reference. Nowadays file transfers between ships are even more 

effective because of the newly introduced systems like Opti BAND by Thru 

[11] or Binfer [12]. 

2.1.5. Issues with delay in response action 

Another minor drawback may be observed in a situation where navigators employ an 

evolutionary algorithm and are not executing the proposed maneuvers at the initially 

given times. The proposed solution by the EA may no longer be viable if a vessel 

delays to alter course or to reduce her speed at the suggested time. As such, the 

algorithm will automatically begin to calculate a new safe route, which can be entirely 

different from the previous one, further reducing the odds for a safest maneuver. Even 

more delay can be obtained if the officer on watch decides to alter course on his own 

accord. Then the algorithm will continuously restart the calculations based on the 

changing circumstances and will be unable to provide a plausible solution. 

2.1.6. Complications with different software versions 

One particular disadvantage in using various types of software, which is supposed to 

interact with vessels other than own ship, presents itself in the face of software 

version updates. Usually after the initial software is launched, it will feature 

periodical updates, so it may become better, faster and more reliable. Thus the same 

software will have different versions on different vessels. The complication with this 

situation is as follows: Not all vessels will be able to apply or install the latest version 

of the software. The reasons why a vessel may not have the latest version of the EA 

software are many, but that is beside the main point. The problem which arises is that 

different versions of the same software may process data differently and yield various 

results.  

In the following example Vessel A uses Version 2.1 of an EA Algorithm and 

Vessel B uses the more advanced Version 3.0 of the same algorithm. In addition 

Vessel B has a slower speed than Vessel A. 

Both versions of the algorithm use lane encouragement factors but Version 2.1 

operates with more stringent stationary constraints. As the algorithm becomes more 

advanced, the penalties for stationary constraints have been reduced in the latest 

version. In the following scenario algorithm Version 2.1 will provide the solution on 

Fig. 2. Algorithm Version 3.0 will provide the solution on Fig. 3. 

As it can be seen, algorithm Version 2.1 will expect Vessel B to start altering 

course to port to avoid the land mass, while Version 3.0 on vessel B will be displaying 

various results based on the unexpected course alterations of Vessel A. As a result 

(Fig. 4) this scenario may lead to dangerous close quarters situation with irreversible 

consequences. 

Other differences between software versions may include a change in the 

amount of iterations required to reach an acceptable solution. If one algorithm 

requires more iterations, then the time needed for the calculation will also increase. 

Computing power on different ships is a factor as well and will differ based on the 
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hardware installed. As a result, an EA with fewer iterations or an algorithm, installed 

on hardware with more computing power will provide a solution to the navigator 

sooner. 

 

Fig. 2                                    Fig. 3                                           Fig. 4 

In a scenario where one algorithm reaches an acceptable solution faster than 

another and where an officer of the watch promptly alters the course based on the 

said solution, a slower algorithm on a nearby vessel will not be able to reach an 

acceptable solution at all, because its software will restart the process every time the 

base input data shifts with the course alteration of the first vessel. 

2.1.7. Defining the base for ship domains 

Another point to be observed for algorithms which take into account other vessels is 

the definition of ship's domains and the reliability of the received data. 

AIS receives position data from GPS which at times may not be reliable due to 

solar flares, military practice areas etc. When an AIS unit is receiving wrong position 

data from GPS then the same wrong position data is transmitted on the VHF 

frequency to all vessels around. To counter that, a separate module can be included 

in the algorithm to check AIS position data vs ARPA data. The modern ECDIS has 

already implemented this under the name of AIS Association. In general, if the target 

data from the ARPA matches the AIS target data with some margin for error, then 

both targets are displayed as one. However, if there is a difference between the 

bearing, range, course or speed of the target above the preset parameter values, the 

ECDIS displays one target for ARPA and another target for AIS next to it. 

The same module can be incorporated in evolutionary algorithms with priority 

given to ARPA position data, as it does not rely on satellite transmissions. 
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However, the solution comes with its own flaws as ARPA data is not 100% 

accurate and still allows for errors. A compromise must be established between the 

two systems to ensure smooth and accurate representation of the targets around the 

own vessel. 

2.2. Division of the EAs 

A drawback in some EAs [7, 10, 13] is that they fail to take into account the adverse 

effects of heavy weather. In this particular case it is safe to divide the evolutionary 

algorithms into two major categories: 

In the first category, there are EAs that take into account heavy weather and are 

so designed to avoid it to a specified extent. But in their source code there is nothing 

incorporated regarding avoiding close quarter situations. These solutions direct 

vessels across oceans, limiting their encounters with foul weather and procure the 

most optimal route from a safe and cost-effective perspective. 

In the second category, there are algorithms that do their best to avoid collisions, 

land masses and to keep the vessel on the shortest safest route, yet they aren't designed 

to account for rough seas or gale-force winds. These solutions are designed to 

navigate vessels in coastal areas and areas with congested traffic and traffic 

separation schemes, thus finding the shortest path from a time perspective.  

3. Conclusion 

Genetic EAs are perfectly suited for both collision avoidance and passage planning 

in coastal areas. EAs mitigate the factor of human error in the decision making 

process and provide reliable results which can be used both by officers and VTS 

control centers. It is up for debate whether EAs will be implemented on board ships 

or in the service of VTMIS.  Despite some of the drawbacks mentioned in this article, 

Genetic EAs have a future in the maritime industry. However it is advisable that more 

time is given for further research, in order to phase out their current deficiencies and 

perfect their performance. 

With regard to passage planning Genetic EAs may not be the best possible 

solution for a most energy efficient passage plan, as there are other algorithms which 

take into account a lot more weather factors, but Genetic EAs are the only algorithms 

that can combine collision avoidance and passage planning in a single real time 

working module. 
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