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1. Introduction 

Authentication codes were invented by G i l b e r t, M a c W i l l i a m s and S l o a n e  

[9] for protecting the integrity of information. The authentication codes involve three 

active parties: A transmitter T, a receiver R, and an opponent O as a model of 

S i m m o n s  [15]. The transmitter sends a message to the receiver using an insecure 

communication channel. The opponent has access to the channel and can interfere 

with the contents of the message transmitted via this channel. 

The transmitter and the receiver share a common key e. It is chosen from some 

key space E. Given a source state s from some source state space S, the transmitter T 

computes a message m = e(s)  M, where M is the message space, and sends m  M 

to the receiver. The receiver accepts or rejects the transmitted message m  M based 

on the same key e. It is possible that more than one message can be used to 

communicate a particular source state s  S, so this is called splitting. If splitting 

occurs, then the transmitter and the receiver need to choose a splitting strategy to 

determine m  M, given s  S and e  E. For any e  E, e(s1) ∩ e(s2) = 0 if s1  s2 

otherwise decoding would be impossible. 

O g a t a et al. [13] introduced a special type of a Balanced Incomplete Block 

Design (BIBD) in connection with authentication codes – a splitting BIBD. They 

established an equivalence between splitting BIBDs and splitting authentication 

codes. Recently this kind of combinatorial design has been studied intensively mainly 

with respect to the existence problem. 

In this paper we classify splitting designs for some small parameters. We do this 

by a computer-aided method which differs from those used in the papers cited above. 

It is based on a construction method for resolvable balanced incomplete block designs 
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[18]. The method is explained in Section 3 and the obtained results are presented in 

Section 4. 

2. Basic definitions and notations 

An authentication code with splitting is a triple (S, M, E), together with probability 

distributions {pS(s)}sS, {pE(e)}eE, and {{p(m|e, s)}mM : eE, sS}, such that: 

 S is a finite set of u source states;  

 M is a finite set of v messages; 

 E is a finite set of b encoding rules associating to a source state sS one or 

more messages in M. 

A splitting authentication code is c-splitting if |e(s)| = c for any eE, sS. 

The family of encoding rules of an authentication code is described usually by 

an bu encoding matrix with entries in M. Its rows are indexed by the elements of E, 

the columns are indexed by the elements of S, and the entry (e, s) of the matrix is the 

set e(s) (Fig. 3). 

For the basic concepts and notations concerning combinatorial designs refer, for 

instance, to [4, 5]. 

Let V = {Pi}
v
i=1 be a finite set of points, and  = {Bj}

m
j=1 a finite collection of  

k-element subsets of V, called blocks. We say that D = (V, ) is a design (BIBD) with 

parameters 2-(v, k, ), if any 2-element subset of V is contained in exactly  blocks 

of . 

Each point of D is incident with R blocks and the number of the blocks of the 

design m is 

( 1) ( 1)
, .

( 1) ( 1)

v v v
R m

k k k

  
 

 
 

An incidence matrix of the design is a matrix of v rows and m columns which 

contains a 1 in the i-th row and j-th column iff the i-th point is contained in the j-th 

block, and 0 if not. The design is completely determined by its incidence matrix. 

Two designs are isomorphic if there exists an one-to-one correspondence 

between the point and block sets of the first design and respectively, the point and 

block sets of the second design, and if this one-to-one correspondence does not 

change the incidence. An automorphism of the design is a permutation of the points 

that transforms the blocks into blocks. 

A parallel class is a partition of the point set by blocks. A near parallel class is 

a partial parallel class missing a single point. A (near) resolution is a partition of the 

blocks collection into (near) parallel classes. The design is (near) resolvable if it has 

at least one (near) resolution. The parameters of near resolvable designs are  

(v, k, k–1) and for such a design, every point is absent from exactly one class. 

Two (near) resolutions are isomorphic if there exists an automorphism of the 

design mapping each (near) parallel class of the first (near) resolution into a (near) 

parallel class of the second one. 
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Let  = i, …, R and T = Ti, …, TR be both (near) resolutions of one and the 

same design. These two resolutions are orthogonal if |i ∩ Tj|  1, 1 i, j  R. When 

a design has two orthogonal (near) resolutions it is doubly (near) resolvable [1]. 

Orthogonal (near) resolutions may or may not be isomorphic to each other. 

A (v, uc, s)-splitting BIBD [13] is a pair (V, ) such that the following 

properties are satisfied, where Bj    is called a super-block. 

 |V| = v is a finite set of points pi, 1 i  v, || = b is a finite family of super-

blocks; 

 Every Bj   is expressed as a disjoint union Bj = Bj,1 …  Bj,u, where  

Bj,n  V, 1  n  u and |Bj,1| = … = |Bj,u| = c; 

 For each x, y  V (x  y), there exist exactly s super-blocks Bj such that  

x  Bj,n1, y  Bj,n2, n1  n2. 

Each point of V is contained in exactly: 

( 1)
,

( 1)

s v
r

c u

 



 

super-blocks and the number of super-blocks is 

2

( 1)
.

( 1)

sv v
b

c u u

 



 

Therefore the necessary conditions for the existence of a (v, uc, s)-splitting 

BIBD are [13]: 

v ≥ u.c, 

s(v – 1)0 mod (c(u – 1)), 

sv(v – 1)0 mod (c2u(u – 1)). 

Two splitting BIBDs are equivalent if there exists a permutation of the points 

which transforms each super-block of the first splitting design to a super-block of the 

second one. 

There are already quite a lot of works on the existence of (v, uc, s)-splitting 

BIBDs with definite parameters, see for instance [6-8, 16, 17, 19]. O g a t a  et al.  

[13] show that the existence of a (v, c, s) u-external difference family over an 

Abelian group (X, +) implies the existence of a (v, uc, s)-splitting BIBD. 

Up to now all construction methods involve some types of combinatorial 

designs. G e, M i a o  and W a n g  [8] show that splitting BIBDs are a special kind of 

balanced graph designs and establish the existence of (v, uc, 1)-splitting BIBDs for 

u = {3, 4}, c = 2 and for uc = 2c, c even or 3. In [7] group-divisible designs are 

used to set the existence of (v, 23, s)-splitting BIBDs and in [16] to resolve the 

existence question for (v, 33, s)-splitting BIBDs, between 2 and 9. W a n g  [19] 

also use group-divisible designs to obtain a new infinite class of optimal 3-splitting 

authentication codes ((v, 33, 1)-splitting BIBDs). 

In [6] and [7] perfect Mendelsohn designs, nested balanced incomplete block 

designs and a direct cyclic construction lead to the establishment of the existence of 

(v, 22, s)-splitting, (v, 23, s)-splitting and (v, 32, s)-splitting BIBDs for 



 90 

particular values of . A summary of the known results on the existence of splitting 

designs was recently published in [17, Theorem 1.2 - 4], where the authors also settle 

the existence problem of (v, 33, s)-splitting and (v, 34, 1)-splitting designs. 

From combinatorial point of view after the existence problem the question about 

the number of the splitting designs with definite parameters arises. A constructive 

classification might be very useful for application purposes because designs with 

some additional properties can be chosen for any particular application. The aim of 

the present work is the classi cation of splitting BIBDs with certain parameters. 

3. Construction method 

We can rearrange an incidence matrix of a resolvable BIBD with respect to the 

parallel classes (an example is given in Fig. 1). The first m/R matrix columns are a 

partition of the point set and hence one parallel class, the second m/R columns are the 

next parallel class and so on. Vertical lines separate the different parallel classes in 

Fig. 1. 

 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1

0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1

0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0

 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1. The incidence matrix of a resolvable (6, 3, 4) BIBD 

 

Usually a splitting BIBD is presented by a list of it’s super-blocks as in  

[6, 7, 13] or by a family of arrays as in [8, 16, 17, 19]. Here we use a different 

representation of a splitting BIBD as super-matrix. In this way we reduce the size of 

the objects and we succeed to classify splitting BIBDs for some parameters. 

Let’s define an incidence matrix A of a (v, uc, s)-splitting BIBD in a similar 

way as for BIBD: A = (ai,(j–1)u+n)vub, where ai,(j–1)u+n = 1 if pi  Bj,n and ai,(j–1)u+n = 0 if 

pi ∉ Bj,n (i = 1, 2, …, v,  j = 1, 2,…, b, and n = 1, 2, …, u). Note that here Bj is a super-

block and it is split into u blocks. Each point pi, 1  i  v, is incident with r super-

blocks and each block is incident with c points. It is obvious that there are v – uc 

missing points in each super-block. 

As an example let us consider an incidence matrix of a (7, 23, 3)-splitting 

design (Fig. 2). Here v = 7 points (rows of the matrix) and ub = 14 blocks (columns), 

b = 7 super-blocks, where each of them consists of u = 2 blocks. Each block is incident 

with c = 3 points and each point is incident with r = 6 super-blocks. The first u = 2 

matrix columns are in a super-block, the next two in another and so on. A point is 

absent from each super-block (v – uc = 1). 
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For a splitting BIBD a super-block is not a partition of the point set as a parallel 

class is for a BIBD, but each point is at most once in a super-block. 
 

0 0 1 0 1 0 1 0 0 1 0 1 0 1

1 0 1 0 0 1 0 1 0 0 1 0 0 1

1 0 0 1 1 0 0 1 1 0 0 1 0 0

1 0 0 1 0 1 1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 0 1 1 0 1 0

0 1 1 0 0 1 0 0 1 0 0 1 1 0

0 1 0 1 0 0 1 0 1 0 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2. Incidence matrix of a (7, 23, 3)-splitting design 

 

One popular approach for constructing a resolvable BIBD is to generate not the 

resolution itself, but the corresponding equidistant code. There is a one-to-one 

correspondence [14] between the resolutions of 2-(qk, k, ) designs and the  

(R, qk, R – )q equidistant codes, q > 1. An equidistant (R, v, Hd)q code is a set of v 

words of length R over an alphabet with q elements, such that the Hamming distance 

between any two distinct codewords is exactly Hd. The equidistant code given in  

Fig. 3 corresponds to the resolution of the design from Fig. 1. 
 

 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 2 2 2 2 2 2 

1 2 2 2 1 1 1 2 2 2 

2 1 2 2 1 2 2 1 1 2 

2 2 1 2 2 1 2 1 2 1 

2 2 2 1 2 2 1 2 1 1 

 
Fig. 3. An equidistant (10, 6, 6)2 code 

 

 

Each parallel class is replaced by a q-ary column, 
v

q
k

   such that symbol n is 

assigned to a row with one in the n-th position. So we define in the same manner the 

incidence super-matrix G of a splitting BIBD: G = (gi,j)vb, where gi,j = n if pi  Bj,n 

and gi,j = 0 if pi ∉ Bj (i = 1, 2, …, v,  j = 1, 2, …, b, and  n = 1, 2, …, u). In this case 

the alphabet is with 
v

q
c

  + 1 = u + 1 elements, because we use one more element 

to denote the super-block missing points. The number of zeroes in each column is the 

number of absent points from each super-block. In this way we deal with a vb matrix 

(Fig. 4) instead of a vub one (Fig. 2). 
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0 1 1 1 2 2 2 

1 1 2 2 0 1 2 

1 2 1 2 1 2 0 

1 2 2 1 2 0 1 

2 0 1 2 2 1 1 

2 1 2 0 1 2 1 

2 2 0 1 1 1 2 
 

Fig. 4. Incidence super-matrix of a (7, 23, 3)-splitting design 

 

 

In the case v1 (mod c), i.e., v = uc + 1 (v, uc; s)-splitting BIBD corresponds 

to a (v, c, c – 1) doubly near resolvable design. The columns of a super-matrix form 

the near parallel classes of the first near resolution while its rows – the near parallel 

classes of the second one. In [10, Theorem 2] authors introduce the correspondence 

between near resolutions of (v, k, s) BIBDs and special kind of codes. They are 

defined in the same manner as above. There the absent point is denoted by a special 

symbol while we use the zero symbol. Also in [2, Theorem 1] the correspondence 

between near resolvable BIBDs and constant-weight codes meeting the Johnson’s 

bound is presented. Both papers consider only this particular case. Near resolvable 

designs were generalized in [3] to m-nearly resolvable BIBDs under additional 

restrictions. There are no correspondence between splitting BIBDs with more than 

one missing point and m-nearly resolvable BIBDs. 

In our example (Fig. 4) looking at the incidence super-matrix of the considered 

splitting BIBD if we choose 1’s for the source state s1, 2’s for s2 and if each column 

i corresponds to a key rule ei a 3-splitting authentication code is obtained (Fig. 5). 

 

 

ei s1 s2 

e1 {2, 3, 4} {5, 6, 7} 

e2 {1, 2, 6} {3, 4, 7} 

e3 {1, 3, 5} {2, 4, 6} 

e4 {1, 4, 7} {2, 3, 5} 

e5 {3, 6, 7} {1, 4, 5} 

e6 {2, 5, 7} {1, 3, 6} 

e7 {4, 5, 6} {1, 2, 7} 

 
Fig. 5. A 3-splitting authentication code from the (7, 23, 3)-splitting design 

 

By permuting the points, the super-blocks and the blocks within a super-block, 

a splitting design can be transformed in a splitting design with the following 

properties: 

 The first super-block is fixed and its blocks are:  

{v – cu + 1, v – cu + 2, …, v – c(u – 1)}, 

{v – c(u – 1) + 1, …, v – c(u – 2)}, …, {v – c + 1, v – c + 2, …, v}. 
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 The rows of the incidence super-matrix are in ascending lexicographic order. 

 The columns of the incidence super-matrix are in ascending lexicographic 

order. 

Regarding the defined incidence super-matrix (Fig. 4) this means that the first 

column is (0, …, 0, 1, 1, …, 1, …, u, u, …, u)T and the rows and the columns are in 

lexicographic order. 

Let us consider part of the design points and their incidence with the design 

blocks. We shall call the structure obtained in this manner partial solution. 

We generate by backtrack search row by row the incidence super-matrix that 

corresponds to a splitting BIBD with definite parameters. An equivalence test is 

applied on the partial solutions after each added row (point). This equivalence test 

checks if some permutation of the constructed rows can transform the current solution 

into a lexicographically smaller one which has already been considered. If this 

happens, the partial solution is not extended and the next possibility for the current 

row is considered. The details of such a technique are well described, for instance, in 

[11]. 

4. Results 

This way we succeed to classify up to equivalence splitting designs with some small 

parameters. The results are summarized in Table 1. In the last column the number of 

nonisomorphic splitting BIBDs is given. 

In [12] all (2k + 1, k, k – 1) near resolvable BIBDs for 3  k 13 are enumerated. 

There are only one nonisomorphic such near resolvable BIBD for k  11. Writing 

them in terms of super-matrix defined above shows that they also are doubly 

resolvable. This concerns (5, 22, 2)-splitting, (7, 23, 3)-splitting and (11, 25, 5)-

splitting designs. They correspond to (5, 2, 1), (7, 3, 2) and (11, 5, 4) doubly near 

resolvable BIBDs. 
 

 
Table 1. Splitting BIBDs 

v uc  r b Number 

5 22 2 4 5 1 

9 22 1 4 9 2 

9 22 2 8 18 2,083 

6 23 6 10 10 1 

7 23 3 6 7 1 

11 25 5 10 11 1 

9 32 3 6 9 14,966 
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