

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 18, No 5 Special Thematic Issue on Optimal Codes and Related Topics Sofia • 2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.2478/cait-2018-0016

# On Tight Optimal Conflict-Avoiding Codes for 3, 4, 5 and 6 Active Users

## Tsonka Baicheva<sup>1,2</sup>, Svetlana Topalova<sup>1</sup>

<sup>1</sup>Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria <sup>2</sup>D. A. Tsenov Academy of Economics, 5250 Svishtov, Bulgaria E-mails: tsonka@math.bas.bg svetlana@math.bas.bg

*Abstract:* We classify tight optimal conflict-avoiding codes of weights 3, 4, 5 and 6 and given small lengths.

Keywords: Conflict-avoiding codes, tight optimal codes, protocol sequences.

### 1. Introduction

Conflict-Avoiding Codes (CAC) of weight k, length n and cardinality M can be applied to avoid collisions in channels with asynchronous multiple access without feedback. In that case the number of codewords M corresponds to the maximum number of users of the channel and the weight k to the maximum number of active users at a given moment. It is assumed that time is partitioned into intervals (slots) and all users have slot synchronization. No other synchronization is assumed. The assigned to each user protocol sequences formed from codewords of a suitable CAC, must allow each of k active users to transmit a data packet successfully in one of k attempts during n time slots without collisions with other active users.

**Definition 1.** A conflict-avoiding code of length *n* for *k* active users ((n, k) CAC) is a set  $C \subseteq \{(0, 1)\}^n$  of binary vectors, or codewords, all of Hamming weight *k*, such that arbitrary cyclic shifts x', y' of distinct codewords  $x, y \in C$  intersect in at most one coordinate, i.e.,  $dist(x', y') \ge 2k - 2$ , where dist(x', y') is the Hamming distance between x' and y'.

**Definition 2.** The support supp(x) of a codeword x is the set of indices of its nonzero coordinates.

It is more convenient for our investigation to use supp(x) instead of x. Denote supp(x) by X and let  $X = \{x_0, x_1, ..., x_{k-1}\}$ . The support of a cyclic shift of x is then a translate  $\{x_0 + t, x_1 + t, ..., x_{k-1} + t\}$  of X, where addition is modulo n.

Denote by  $\Delta'(X) = \{x_i - x_j \pmod{n} | x_i, x_j \in X, i \neq j\}$  the multiset of differences of *X* and by  $\Delta(X)$  its corresponding set.

**Definition 3.** The number  $|\Delta(X)|$  is called the **type of** *X* and denoted by *T*(*X*).

**Definition 4.** Any (n, k) conflict-avoiding code C can be considered as a collection of k subsets of  $Z_n$  such that

 $\Delta(X) \cap \Delta(Y) = \emptyset$  for any  $X, Y \in C$ .

Therefore when we talk of codewords below, we will actually mean k subsets of  $Z_n$ .

**Definition 5.** Two codewords are equivalent if  $\Delta(X) = \Delta(Y)$ .

We assume that  $x_0 < x_1 < ... < x_{k-1}$  for each codeword  $X = \{x_0, x_1, ..., x_{k-1}\}$ . We define a lexicographic order on the codewords in the following way.

**Definition 6.** The codeword  $X' = \{x'_0, x'_1, ..., x'_{k-1}\}$  is lexicographically smaller than  $X'' = \{x''_0, x''_1, ..., x''_{k-1}\}$  if T(X') < T(X''), or if  $|\Delta(X')| = |\Delta(X'')|$  and  $x'_i = x''_i$  for i < j, but  $x'_j < x''_j$  for some j.

Without loss of generality we assume that each codeword is lexicographically smaller than its translates. This means that  $x_0 = 0$  for each codeword and when we say that  $X_1$  is mapped to  $X_2$  by the permutation  $\varphi$ , we mean that  $X_2$  is the smallest translate of  $\varphi(X_1)$ .

**Definition 7.** An (n, k) CAC of size *s* is **tight** (**perfect**) if  $\bigcup_{i=1}^{s} |\Delta X_i| = n-1$ , that is if all nonzero differences are covered.

**Example 1.** The four codewords of a tight (15, 3) CAC are listed below together with their sets of differences and types:

| $X_1 = \{0, 5, 10\}$ | $\Delta(X_1) = \{5, 10\}$        | $\mathrm{T}(X_1)=2$  |
|----------------------|----------------------------------|----------------------|
| $X_2 = \{0, 1, 2\}$  | $\Delta(X_2) = \{1, 2, 13, 14\}$ | $\mathrm{T}(X_2)=4$  |
| $X_3 = \{0, 7, 11\}$ | $\Delta(X_3) = \{4, 7, 8, 11\}$  | $\mathrm{T}(X_3)=4$  |
| $X_4 = \{0, 6, 12\}$ | $\Delta(X_4) = \{3, 6, 9, 12\}$  | $\mathrm{T}(X_4)=4.$ |
|                      | 1 1 1 1 1                        | 1. 1. 6 01           |

**Definition 8.** Denote by M(n, k) the maximum cardinality of a CAC of length *n*. A conflict-avoiding code *C* is said to be **optimal** if |C| = M(n, k).

The advantage of using optimal codes is that they enable the largest number of asynchronous users to transmit packets efficiently and reliably through a multipleaccess channel without feedback.

**Definition 9.** Two (n, k) CACs are multiplier equivalent if they can be obtained from one another by a multiplier automorphism of  $Z_n$  and replacement of codewords by some of their translates.

**Remark.** Any CAC of length n for k active users can be viewed as an (n, k, k, 1) optical orthogonal code. Such codes are used in optical code-division multiple access channels [1].

Optimal CACs as protocol sequences for a multiple-access collision channel without feedback have been studied in many works [2-18]. The case with three active users (k = 3) is completely settled. Several optimal constructions for weights 4 and 5 can be found in [14]. General upper bounds on the size of constant weight CACs applicable to all code lengths and all Hamming weights are derived in [15] and [16]. Examples of small length CACs can be found in [17], and classification results about CACs of weights up to 7 and small lengths in [2] and [3].

Tight CACs have additional properties which make them interesting as incidence structures and thus might be more appropriate in constructions of other codes or combinatorial structures. There are, for instance, recursive constructions of CACs from tight CACs of smaller lengths [11]. That is why tight CACs are of particular importance.

Some existence conditions and constructions of tight (n, 3) CACs for definite values of n can be found in [13, 5, 18, 10, 11], but checking the conditions and applying the constructions is often a difficult job for those who are interested in such codes from any application point of view. There are tight CACs among those which are classified in [2, 3], but they are not explicitly listed. That is why we think that the online availability of the nonequivalent tight CACs of small k and n will be useful for any application purposes. This motivated us to present the current classification of tight optimal CACs.

Our investigation concerns optimal tight CACs of weight k = 3 and length  $n \le 111$ , k = 4 and  $n \le 120$ , k = 5 and  $n \le 118$ , k = 6 and  $n \le 119$ , and k = 7 and  $n \le 95$ . The construction algorithm which we use here, allows us to classify the tight codes for 21 lengths for which the optimal CACs are not classified in [2, 3].

## 2. Algorithm

Our algorithm constructs tight codes with a given cardinality *s*. It performs backtrack search on the set of all *possible codewords*. We obtain them in advance from all nonequivalent (by Definition 5) *k*-sets of  $Z_n$ . We find the type of the codewords defined by these *k*-sets. Let  $T_{\min}$  be the smallest type. We want to construct a code of *s* codewords. Such a code cannot have codewords of a type greater than  $T_{\max} = n - 1 - (s - 1)T_{\min}$ . Possible codewords are only *k*-sets of type at most  $T_{\max}$ . Therefore the set of possible codewords for a code of cardinality s + 1 might be much smaller than that of a code of cardinality *s*.

The possible codewords are partitioned in groups, such that each multiplier automorphism of  $Z_n$  maps any codeword to a codeword of the same group. We call leader the lexicographically smallest codeword of the group. We sort the groups with respect to the lexicographic order of their leaders and save them. For each possible codeword we know the possible codeword to which it is mapped by any automorphism of  $Z_n$ , and this makes the below described minimality test very fast.

The set of possible codewords we construct here differs from the similar sets used in [2] and [3]. In [2] equivalence of codewords is not defined, while here we give Definition 5 following [18]. By this definition we filter away possible codewords which might lead to codes which are different as combinatorial structures, but which perform the same as CACs for channels with asynchronous multiple access without feedback. The smaller search set makes the classification algorithm much faster. In [3] we remove a group from the set of possible codewords if the set of differences of its leader is the same as the set of differences of another leader, while here we remove a group from the set of possible codewords if the set of differences of its leader is the same as the set of differences of any possible codeword from another group. The backtrack search on the possible codewords is similar to the one we used in [2] and [3], namely when we add the next codeword, we speed up the algorithm by performing a Minimality test and a Type test to the current partial solution. Apart from this, to construct tight codes here, we apply a Tight test too. We briefly describe the three tests.

Suppose that r codewords of the code have been already found. Let T be the type of the r-th codeword, and let d be the number of distinct differences covered by the r codewords.

**Type test.** We only look for codes with a definite number *s* of codewords. That is why the type of the remaining possible codewords (of the array we choose them from) is at least as big as that of the *r*-th chosen one. That is why  $d + (s - r)T \le n - 1$ . If this does not hold, the next possibility for the (*r*-1)-st codeword is considered.

**Tight test.** Knowing the types of the remaining possible codewords, we try to find codeword types  $T_1, ..., T_{s-r}$  such that  $d + T_1 + ... + T_{s-r} = n - 1$ . If this does not hold, the next possibility for the (r - 1)-st codeword is considered.

**Minimality test.** We check if the current partial solution can be mapped to a lexicographically smaller one by some of the automorphisms of  $Z_n$ . If it can, an equivalent partial solution has already been considered, and we look for the next possibility for the current codeword.

#### 3. Results

We consider values of n for which the cardinality of the optimal CACs is known [2, 3]. The results are summarized in the tables below. Only tight CACs with at least 2 codewords are included. Lengths for which no tight optimal CAC exists, are not presented. The number of nonequivalent tight optimal CACs is given in column TCACs. One can see that this number is very big if the size of the optimal codes is relatively small for the given length. Tight optimal codes with relatively big sizes for the given length range are most interesting and usually there are not many of them.

All the constructed codes are available online and can be downloaded from **http://www.moi.math.bas.bg/~svetlana**. Information on the different types of codes (with respect to the types of the codewords) is also given there as illustrated in the following example.

**Example 2.** There are nine nonequivalent (119, 6) tight optimal CACs of four code-types which are presented as:

| 0) 2: | 6-1 | 10-5 | 12-3 | 26-1 |
|-------|-----|------|------|------|
| 1) 2: | 6-1 | 10-4 | 12-4 | 24-1 |
| 2) 1: | 6-1 | 12-8 | 16-1 |      |
| 3) 4: | 6-1 | 12-7 | 14-2 |      |
|       |     |      |      |      |

This means that there are two codes of code-type 0 (with one codeword of type 6, five codewords of type 10, three of type 12 and one of type 26), two codes of code-type 1, one of code-type 2 and four of code-type 3.

Table 1. Tight optimal CACs with k = 3 and  $n \le 111$ 

|                                                                                                                                                                                                                                                                                                                                                      | 1. Hgnt 0                                                                                                                                                                                                                                                                                          | punnai Crix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| п                                                                                                                                                                                                                                                                                                                                                    | M(n, 3)                                                                                                                                                                                                                                                                                            | TCACs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18                                                                                                                                                                                                                                                                                                                                                   | $     \begin{array}{r}       3 \\       4 \\       3 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       5 \\       5 \\       6 \\       6 \\       6 \\       7 \\       7 \\       7 \\       7 \\       8 \\       8 \\       8 \\       9 \\       9     \end{array} $ | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 27                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 28                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 36                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                  | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 41                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 42                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13           15           16           17           18           19           20           21           23           24           25           27           28           29           30           31           32           33           35           36           37           39           40           41           42           43           44 | 10<br>10                                                                                                                                                                                                                                                                                           | $     \begin{array}{r}       1 \\       1 \\       2 \\       1 \\       2 \\       2 \\       3 \\       5 \\       1 \\       2 \\       5 \\       1 \\       2 \\       5 \\       1 \\       2 \\       2 \\       3 \\       1 \\       2 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       1 \\       2 \\       3 \\       3 \\       1 \\       2 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\     $ |
| 44                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                  | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| п                                                  | M(n, 3)                          | TCACs                                                    |
|----------------------------------------------------|----------------------------------|----------------------------------------------------------|
| 47                                                 | 11                               | 1                                                        |
| 48                                                 | 10                               | 1,602                                                    |
| 49                                                 | 11                               | 22<br>4                                                  |
| 51<br>52                                           | 11<br>13<br>11<br>13<br>13<br>12 |                                                          |
| 52                                                 | 11                               | 621                                                      |
| 53                                                 | 13                               | 1                                                        |
| 54                                                 | 13                               | 2                                                        |
| 56                                                 | 12                               | 170                                                      |
| 53<br>54<br>56<br>57                               | 14<br>14<br>13<br>15<br>15<br>13 | $ \begin{array}{r}                                     $ |
| 59                                                 | 14                               | 2                                                        |
| 60                                                 | 13                               | 7,702                                                    |
| 61                                                 | 15                               | 1                                                        |
| 63                                                 | 15                               | 46                                                       |
| 64                                                 | 13                               | 101,136                                                  |
| 65                                                 | 16                               | 6<br>1                                                   |
| 66                                                 | 16                               | 1                                                        |
| 67                                                 | 16                               | 4<br>200                                                 |
| 68                                                 | 16<br>15<br>17<br>17             | 200                                                      |
| 69                                                 | 17                               | 73                                                       |
| 71                                                 | 17                               | 3                                                        |
| 72                                                 | 16                               | 1,333                                                    |
| 73                                                 | 17                               | 80                                                       |
| 75                                                 | 19                               | 4<br>377,203                                             |
| 76                                                 | 16                               | 377,203                                                  |
| 69<br>71<br>72<br>73<br>75<br>76<br>77<br>78<br>79 | 18                               | 78<br>1<br>5                                             |
| 78                                                 | 19                               | 1                                                        |
| 79                                                 | 19                               | 5                                                        |

|  | п   | M(n, 3)                                | TCACs      |
|--|-----|----------------------------------------|------------|
|  | 80  | 17                                     | 209,575    |
|  | 81  | 19                                     | 1,758      |
|  | 83  | 20                                     | 4          |
|  | 84  | 19                                     | 2,464      |
|  | 85  | 21                                     | 10         |
|  | 87  | 22                                     | 2          |
|  | 88  | 19                                     | 39,552     |
|  | 89  | 21                                     | 125        |
|  | 90  | 22                                     | 3 4        |
|  | 91  | 22<br>22<br>20<br>23<br>23<br>21       | 4          |
|  | 92  | 20                                     | 200,224    |
|  | 93  | 23                                     | 6          |
|  | 95  | 23                                     | 2          |
|  | 96  | 21                                     | 3,411,597  |
|  | 97  | 24                                     | 1          |
|  | 99  | 24<br>22<br>25<br>25<br>25<br>25<br>22 | 40         |
|  | 100 | 22                                     | 40,928     |
|  | 101 | 25                                     | 1          |
|  | 102 | 25                                     | 1          |
|  | 103 | 25                                     | 5          |
|  | 104 |                                        | ≥5,000,000 |
|  | 105 | 26                                     | 22<br>2    |
|  | 107 | 26                                     |            |
|  | 108 | 24                                     | ≥3,600,000 |
|  | 109 | 27                                     | 2 2        |
|  | 111 | 28                                     | 2          |
|  |     |                                        |            |

## Table 2. Tight optimal CACs with k = 4 and $n \le 120$

| Table          | 2. Hgm 0         | punnai Cr                                            |
|----------------|------------------|------------------------------------------------------|
| п              | M(n, 4)          | TCACs                                                |
| 17             | 2                | 1                                                    |
| 20<br>24       | 2<br>3<br>3<br>3 | $ \begin{array}{r} 1\\ 2\\ 1\\ 4\\ 2 \end{array} $   |
| 24             | 3                | 2                                                    |
| 25<br>28<br>30 | 3                | 1                                                    |
| 28             | 4                | 4                                                    |
| 30             | 4                | 2                                                    |
| 32             | 5                | 1                                                    |
| 34             | 5                | 1                                                    |
| 35             | 6<br>5           | 1                                                    |
| 36             | 5                | 13                                                   |
| 37             | 6                | 1                                                    |
| 38             | 6<br>5           | 1 2                                                  |
| 39             | 5                | 1                                                    |
| 40             | 6<br>6           | $ \begin{array}{r} 1\\ 24\\ 2\\ 3\\ 11 \end{array} $ |
| 41             | 6                | 2                                                    |
| 42             | 6                | 3                                                    |
| 43             | 6                | 11                                                   |
| 44             | 7                | 6                                                    |
| 45             | 6<br>7<br>6      | 66                                                   |
| 46             | 7<br>7           | 6                                                    |
| 47             | 7                | 1                                                    |

| with k   | a = 4  and  n | $\geq 120$ |
|----------|---------------|------------|
| п        | M(n, 4)       | TCACs      |
| 57       | 8             | 3          |
| 58       | 9             | 1          |
| 59       | 9<br>9        | 1          |
| 60       | 9             | 57         |
| 61       | 9             | 4          |
| 62       | 9             | 302        |
| 63       | 9             | 2          |
| 64       | 10            | 6          |
| 65       | 10            | 5          |
| 67       | 10            | 4          |
| 68       | 10            | 629        |
| 69       | 11            | 0          |
| 70       | 11            | 9          |
| 71       | 10            | 440        |
| 72       | 11            | 11         |
| 73       | 11            | 3          |
| 74       | 11            | 294        |
| 75       | 11            | 38         |
| 76<br>77 | 12            | 5          |
|          | 12            | 1          |
| 78       | 11            | 26,106     |
|          |               |            |

| п   | M(n, 4) | TCACs   |
|-----|---------|---------|
| 88  | 14      | 4       |
| 89  | 13      | 517     |
| 90  | 14      | 8       |
| 91  | 14      | 1       |
| 92  | 14      | 572     |
| 94  | 14      | 3,827   |
| 95  | 14      | 4,386   |
| 96  | 14      | 22,577  |
| 97  | 15      | 2       |
| 98  | 15      | 72      |
| 99  | 14      | 160,321 |
| 100 | 16      | 21      |
| 101 | 15      | 337     |
| 102 | 15      | 17,812  |
| 104 | 17      | 2       |
| 105 | 16      | 11      |
| 106 | 16      | 2,950   |
| 107 | 16      | 245     |
| 108 | 16      | 10,812  |
| 109 | 16      | 6,676   |
| 110 | 17      | 692     |
|     |         |         |

Table 2 (continued)

| п  | M(n, 4) | TCACs |
|----|---------|-------|
| 48 | 7       | 24    |
| 49 | 8       | 1     |
| 50 | 7       | 350   |
| 51 | 7       | 4     |
| 52 | 8       | 18    |
| 53 | 7       | 225   |
| 55 | 8       | 37    |
| 56 | 8       | 310   |

| п  | M(n, 4) | TCACs |
|----|---------|-------|
| 79 | 12      | 3     |
| 80 | 13      | 2     |
| 82 | 12      | 3,797 |
| 83 | 12      | 470   |
| 84 | 13      | 1     |
| 85 | 13      | 57    |
| 86 | 13      | 206   |
| 87 | 13      | 2     |
|    |         |       |

| n   | M(n, 4) | TCACs   |
|-----|---------|---------|
| 112 | 17      | 4,858   |
| 113 | 17      | 231     |
| 114 | 17      | 9,480   |
| 115 | 17      | 95,927  |
| 116 | 18      | 340     |
| 117 | 17      | 162,282 |
| 118 | 18      | 2,455   |
| 120 | 18      | 45,890  |

Table 3. Tight optimal CACs with k = 5 and  $n \le 118$ nM(n, 5)TCACsnM(n, 5)TCACs

|    | e       |       |
|----|---------|-------|
| п  | M(n, 5) | TCACs |
| 43 | 3       | 1     |
| 45 | 6       | 1     |
| 47 | 5       | 1     |
| 50 | 6       | 1     |
| 54 | 6       | 1     |
| 55 | 6       | 7     |
| 56 | 6       | 2     |
| 60 | 6       | 23    |
| 61 | 6       | 10    |
| 62 | 6       | 5     |
| 63 | 8       | 2     |
| 64 | 6       | 15    |
| 65 | 7<br>7  | 11    |
| 66 |         | 4     |
| 67 | 7       | 2     |
| 69 | 8       | 1     |
| 70 | 8       | 8     |
| 71 | 7       | 13    |
| 72 | 7       | 64    |
|    |         |       |

| п  | M(n, 5) | TCACs |  |  |  |
|----|---------|-------|--|--|--|
| 73 | 8       | 15    |  |  |  |
| 75 | 8       | 34    |  |  |  |
| 77 | 8       | 362   |  |  |  |
| 78 | 8       | 47    |  |  |  |
| 79 | 8       | 19    |  |  |  |
| 80 | 8       | 59    |  |  |  |
| 81 | 9       | 4     |  |  |  |
| 82 | 8       | 39    |  |  |  |
| 83 | 8       | 285   |  |  |  |
| 84 | 8       | 1,302 |  |  |  |
| 85 | 9       | 88    |  |  |  |
| 86 | 9       | 1     |  |  |  |
| 88 | 9       | 2     |  |  |  |
| 89 | 9       | 84    |  |  |  |
| 91 | 10      | 6     |  |  |  |
| 93 | 10      | 9     |  |  |  |
| 95 | 11      | 13    |  |  |  |
| 96 | 9       | 4,214 |  |  |  |
| 97 | 12      | 2     |  |  |  |

| п   | M(n, 5) | TCACs |
|-----|---------|-------|
| 98  | 10      | 25    |
| 99  | 12      | 2     |
| 101 | 10      | 468   |
| 102 | 10      | 1,942 |
| 103 | 10      | 2,104 |
| 104 | 10      | 2,028 |
| 105 | 11      | 1,521 |
| 107 | 11      | 67    |
| 108 | 11      | 58    |
| 109 | 11      | 372   |
| 110 | 12      | 18    |
| 111 | 12      | 94    |
| 112 | 11      | 1,064 |
| 113 | 12      | 6     |
| 114 | 12      | 13    |
| 115 | 13      | 44    |
| 117 | 14      | 2     |
| 118 | 12      | 239   |
|     |         |       |

Table 4. Tight optimal CACs with k = 6 and  $n \le 119$ 

| Table 4. Fight optimal CACs with $k = 6$ and $n \le 119$ |         |       |  |     |         |       |     |     |         |       |
|----------------------------------------------------------|---------|-------|--|-----|---------|-------|-----|-----|---------|-------|
| п                                                        | M(n, 6) | TCACs |  | n   | M(n, 6) | TCACs |     | n   | M(n, 6) | TCACs |
| 42                                                       | 3       | 1     |  | 90  | 7       | 1     |     | 107 | 8       | 38    |
| 62                                                       | 4       | 1     |  | 91  | 8       | 20    | - T | 108 | 9       | 2     |
| 66                                                       | 5       | 1     |  | 94  | 8       | 1     |     | 111 | 9       | 1     |
| 69                                                       | 5       | 1     |  | 96  | 8       | 2     | - T | 112 | 9       | 6     |
| 72                                                       | 5       | 1     |  | 98  | 8       | 45    | - T | 116 | 9       | 4     |
| 77                                                       | 8       | 1     |  | 99  | 8       | 9     | - T | 117 | 9       | 60    |
| 84                                                       | 8       | 5     |  | 100 | 8       | 3     |     | 119 | 10      | 9     |
| 88                                                       | 7       | 2     |  | 103 | 8       | 4     |     |     |         |       |
| 89                                                       | 6       | 2     |  | 104 | 8       | 13    |     |     |         |       |
|                                                          |         |       |  |     |         |       |     |     |         |       |

| Table 5. | Tight optima | l CACs with | $k = 7$ and $n \le 95$ |
|----------|--------------|-------------|------------------------|
|----------|--------------|-------------|------------------------|

| 14010 01 11 | Sint optimital et les t |       |
|-------------|-------------------------|-------|
| п           | M(n,7)                  | TCACs |
| 60          | 2                       | 1     |
| 63          | 4                       | 2     |
| 91          | 8                       | 1     |
|             |                         |       |

*Acknowledgements*: The research of the first author was partially supported by the Bulgarian National Science Fund, Contract No DH 12/8, 15.12.2017. The research of the second author was partially supported by the Bulgarian National Science Fund, Contract No DH 02/2, 13.12.2016.

### References

- 1. C h u n g, F. R. K., J. A. S a l e h i, V. K. W e i. Optical Orthogonal Codes: Design, Analysis, and Applications. IEEE Trans. Inform. Theory, Vol. **35**, 1989, No 3, pp. 595-604.
- B a i c h e v a, T., S. T o p a l o v a. Optimal Conflict-Avoiding Codes for 3, 4 and 5 Active Users. – Problems of Information Transmission, Vol. 53, 2017, No 1, pp. 42-50.
- 3. B a i c h e v a, T., S. T o p a l o v a. Classification of Optimal Conflict-Avoiding Codes of Weights 6 and 7. Electronic Notes in Discrete Mathematics, Vol. **57**, March 2017, pp. 9-14.
- F u, H., Y. L i n, M. M i s h i m a. Optimal Conflict-Avoiding Codes of Even Length and Weight 3. – IEEE Trans. Inform. Theory, Vol. 56, 2010, No 11, pp. 5747-5756.
- F u, H., Y. L o, K. S h u m. Optimal Conflict-Avoiding Codes of Odd Length and Weight Three. Des. Codes Cryptogr., Vol. 72, 2014, No 2, pp. 289-309.
- Jimbo, M., M. Mishima, S. Janiszewski, A. Y. Teymorian, V. D. Tonchev. On Conflict-Avoiding Codes of Length n = 4m for Three Active Users. – IEEE Trans. Inform. Theory, Vol. 53, 2007, No 8, pp. 2732-2742.
- L e v e n s h t e i n, V. I. Conflict-Avoiding Codes for Many Active Users. In: Abstarcts of 14th Internat. Conference Problems of Theoretic Cybernetics, Penza, 2005, pp. 86-86 (in Russian).
- L e v e n s h t e i n, V. I., V. D. T o n c h e v. Optimal Conflict-Avoiding Codes for Three Active Users. – In: Proc. of IEEE Internat. Symposium on Inform. Theory, Adelaide, 2005, pp. 535-537.
- 9. L e v e n s h t e i n, V. I. Conflict-Avoiding Codes and Cyclic Triple Systems. Probl. of Inform. Transm., Vol. **43**, 2007, No 3, pp. 199-212.
- 10. L i n, Y., M. M i s h i m a, J. S a t o h, M. J i m b o. Optimal Equi-Difference Conflict-Avoiding Codes of Odd Length and Weight Three. – Finite Fields Appl., Vol. 26, 2014, pp. 49-68.
- 11. M a, W., C. Z h a o, D. S h e n. New Optimal Constructions of Conflict-Avoiding Codes of Odd Length and Weight 3. – Des. Codes Cryptogr., Vol. 73, 2014, No 3, pp. 791-804.
- 12. M i s h i m a, M., H. F u, S. U r u n o. Optimal Conflict-Avoiding Codes of Length n=0(mod 16) and Weight 3. Des. Codes Cryptogr., Vol. 52, 2009, No 3, pp. 275-291.
- M o m i h a r a, K. Necessary and Sufficient Conditions for Tight Equi-Difference Conflict Avoiding Codes of Weight 3. – Des. Codes Cryptogr, Vol. 45, 2007, No 3, pp. 379-390.
- 14. M o m i h a r a, K., M. M ü l e r, J. S a t o n, M. J i m b o. Constant Weight Conflict-Avoiding Codes. SIAM J. Discr. Math., Vol. **21**, 2007, No 4, pp. 959-979.
- 15. S h u m, K. W., W. S. W o n g. A Tight Asymptotic Bound on the Size of Constant-Weight Conflict-Avoiding Codes. – Des. Codes Cryptogr., Vol. 57, 2010, No 1, pp. 1-14.
- 16. S h u m, K. W., W. S. W o n g, C. S. C h e n. A General Upper Bound on the Size of Constant-Weight Conflict Avoiding Codes. – IEEE Trans. Inform. Theory, Vol. 56, 2010, No 7, pp. 3265-3276.
- 17. Tonchev, V. D. Tables of Conflict-Avoiding Codes.

#### http://www.math.mtu.edu/ tonchev/CAC.html

18. W u, S. L., H. L. F u. Optimal Tight Equi-Difference Conflict-Avoiding Codes of Length  $n = 2^k \pm 1$  and Weight 3. – J. Comb. Des., Vol. **2**1, 2013, No 6, pp. 223-231.

Received 30.09.2017; Accepted 07.12.2017