
 44

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 18, No 5

Special Thematic Issue on Optimal Codes and Related Topics

Sofia  2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0019

About an Approach for Constructing Combinatorial Objects

Iliya Bouyukliev1, Maya Hristova2
1Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
2Faculty of Mathematics and Informatics, Veliko Tarnovo University, 5003 Veliko Tarnovo, Bulgaria

Emails: iliyab@math.bas.bg maqhristova@gmail.com

Abstract: The classification of combinatorial objects consists of two sub-problems –

construction of objects with given properties and rejection of isomorphic objects. In

this paper, we consider generation of combinatorial objects that are uniquely defined

by a matrix. The method that we present is implemented by backtrack search. The

used approach is close to dynamic programming.

Keywords: Partitioning of integers, generating combinatorial objects, backstrack

search.

1. Introduction

Many discrete problems are related to the classification of combinatorial objects. This

problem consists of two subproblems. The first one is the generation of objects and

the other is the rejection of the isomorphic objects among the obtained ones. In this

paper, we focus only on the construction task.

There are various methods and algorithms for constructing combinatorial

objects. K a s k i and Ö s t e r g ä r d [7] consider the construction of many

combinatorial structures in details: 2-designs (balanced incomplete block designs,

BIBDs), linear codes, Hadamard matrices, etc. B r i n k m a n n [3] presents an

algorithm for generating regular directed graphs using binary matrices. A very

powerful method for classification of graphs is presented in [8]. D z h u m a l i e v a-

S t o e v a, B o u y u k l i e v and M o n e v [5] consider the construction of self-

orthogonal codes from combinatorial designs and propose an algorithm for

generating designs and IMD-matrices. An algorithm for classification of binary self-

dual codes is described in [2]. B u l u t o g l u and M a r g o t [4] present an algorithm

for generating orthogonal arrays implementing linear programming. Another

algorithm for construction of orthogonal arrays is given by S c h o e n, E e n d e b a k

and N g u y e n [9].

In regard to the complexity of the algorithms, the exhaustive generation in many

cases is a computationally hard problem [7]. It requires the development of effective

algorithms for constructing combinatorial objects. In this paper, we consider only

 45

combinatorial objects that are uniquely defined by a matrix over a given alphabet S.

We construct the matrix column by column.

A variant of the method we present is used for construction of linear codes, but

the resulting matrix has a predetermined fixed part [1]. This approach has led to many

new results, but it is not convenient for use in the construction of other combinatorial

objects. Its first implementation was done by emulation of nested “for” loops.

The method we present in this paper is reduced to a specific c partition of

integers. The implementation gives a solution at each step. This approach turns out

to be more effective, convenient, useful and flexible.

The method that we use has three advantages: the number of isomorphic objects

is reduced significantly and early in the construction process, the needed calculations

are essentially reduced, the presented method can be combined with canonical

augmentation type of isomorph free generation [7].

The paper is organized as follows. In Section 2 we consider some basic

definitions that are related to the construction of combinatorial objects. In Section 3

we present the main idea of the algorithm and in Section 4 - the algorithm itself.

2. Basic definitions and notations

There are two main types of generation depending on the properties of the considered

objects. In the first type of construction, the structure of the objects of interest is

known in advance (for example, the permutations of n elements, all k-element subsets

of a given set of n elements, etc.). Such types of objects can be generated quite easily

by recursive methods. The second type of generation refers to objects that have an

incidence structure (designs, linear codes, etc.). Usually, such combinatorial objects

are constructed from a pre-built part of it, which is called a sub-object. The generation

of objects of this type is done step by step. At each step, all possibilities for the sub-

objects are examined. This technique is implemented by searching on a certain set of

sub-objects.

We study the following problem: Construct all combinatorial objects that

are defined by an m0×n0 matrix over a given alphabet S with s elements. For the

purposes of the proposed method, we need to order the elements of the alphabet, so

let S = {r1, r2, …, rs}, r1 < r2 < … < rs.

Definition 1. Search space  (related to the considered problem) is the set of all

matrices with size m0×n over S, where n is an integer, 1 ≤ n ≤ n0. All m0×n matrices

for n < n0 define sub-objects.

If ~ defines an equivalence relation in  then ~ splits  into equivalence classes.

We consider only equivalence relations such that a permutation of the rows of the

considered matrix results in a matrix in the same equivalence class. Actually, we are

interested in a subset of matrices,  , for which the required constraints are

satisfied (because they represent some specific combinatorial objects). We consider

only equivalence relations for which if a matrix G belongs to  then all matrices

equivalent G are in  ( is a union of equivalence classes). Then the classification

 46

problem is to find exactly one representative of each equivalence class in . The

search process is conveniently modeled through a root tree (search tree).

Definition 2. The search tree is a rooted tree, whose nodes are matrices from .

Two nodes are connected with an edge if and only if the matrix, that defines one node

can be obtained from the other one by expanding with a column.

Usually, the root of the search tree is the empty matrix (or a single-column

matrix in some cases).

Definition 3. A level or depth of a node is the length of the path from the node

to the root. This is equal to the number of the columns of the matrix.

The successors of a given node X are sub-objects that can be obtained from X

through a single search step. These are all matrices that are obtained from the given

matrix by expanding with a column.

Definition 4. Let the matrix G   corresponds to the node X of the search tree.

The matrices in , obtained by expanding with a column to G are called direct

successors of G (children of X) and are denoted with C(X). The node X is called their

parent and is uniquely determined by each of its children.

In fact, the search tree is defined by its search space , with its root and the rule

X  C(X). This rule is generally determined by the property P, which is inherited.

Since we construct the matrix (corresponding to the considered object) column

by column, each new column c must satisfy the following two conditions:

(1) The number of coordinates of c that are equal to an element r from the

alphabet S must be equal to a given integer wr.

(2) The column have the property P.

If the columns are too long (the integer m0 is too big) then we need to use some

reduction methods. To clarify the terminology and the algorithms, in this paper we

present examples referring to orthogonal arrays.

Let S be a set (alphabet) of s symbols (levels). We will denote these levels by

0, 1, …, s – 1.

Definition 5 [6]. An N×k array A with entries from S is said to be an orthogonal

array with s levels, strength t (0 ≤ t ≤ k) and index  if every N × t subarray of A

contains each t-tuple based on S exactly  times as a row. We will denote such

Orthogonal Array by OA(N, t, sk).

It is easy to see, that for every i-th (new) column of the matrix G of an orthogonal

array the following conditions are met:

(i) Each symbol from the alphabet must be found in the column exactly

w = N/s times.

(ii) For each set of t – 1 columns v1, v2, …, v(t–1) of the matrix Gi–1, taken together

with the new i-th column, all t-tuples over S must be contained in these columns

exactly  times.

One of the options to reduce the number of non-equivalent objects is to consider

only lexicographically ordered matrices. We use a construction method in which the

matrix is generated column by column. As a result, a matrix with lexicographically

ordered rows is obtained.

The method that we present uses the algorithmic strategy called back-track

search (backtracking). The backtrack search strategy can be presented as depth-first

 47

search of a search tree [1]. With this strategy, the object of interest is constructed

sequentially. At each step, all possible objects (or sub-objects, depending on the

level) are obtained. Every sub-object is used at each subsequent step to obtain the

next objects. In this way, the children at a given step are found through the objects of

the previous step. At each step, a set of possible extensions is generated and an

attempt is made to extend the current sub-object with the elements of that set. If the

current object can be extended, a step forward is made. Otherwise – step back.

Depending on the algorithm’s goals, when the searched objects are constructed it may

stop or step back and continue traversing the search tree.

The backtrack search is a recursive extension of the current object with one step.

Let G be a matrix with columns g1, g2, …, gi. The backtrack procedure defines a set

of extensions of the current object, Gi+1 = Gi+1(g1, g2, …, gi). The procedure

recursively invokes itself for every gi+1  Gi+1 with input (g1, g2, …, gi, gi+1). If all

elements of Gk+1 are considered or the level of the searched objects k is reached, the

return stage in the calling procedure is performed. The backtrack algorithmic strategy

can be described in general with Algorithm 1.

Algorithm 1. Basic Backtrack Algorithm

1. procedure Backtrack((g1, g2, …, gi): object)

2. if i = k then Print((g1, g2, …, gk));

3. else

4. find Gi+1(g1, g2, …, gi);

5. foreach gi+1  Gi+1 do Backtrack((g1, g2, …, gi; gi+1));

We present a particular variant of Algorithm 1 which combines backtrack with

dynamic programming. The specific approach here is the following: If the first i – 1

columns of the matrix G are fixed and the set of all possibilities for i-th column is Ti

then we use the same set Ti to obtain the possibilities for (i + 1)-th column. We give

the details in Section 3.

3. The construction strategy

For our purposes we use the strategy described in [1]. The essential is that each vector

is not represented by its elements, but by the number of elements within an interval

specified by the parent.

Definition 6. Let G be an m×n matrix with lexicographically ordered rows. We

say that the n-tuple k = (k1, k2, …, kn) defines an interval of length l with respect to G

if G contains l rows equal to k.

To every lexicographically ordered matrix G we can juxtapose a vector

L(G) = (l1, l2, …, lt), whose elements correspond to the lengths of the intervals,

defined by the rows of the matrix, t = sn. In particular, each vector-column can be

considered as a matrix, and if the elements of the vector are lexicographically

arranged, they define intervals in a similar manner.

In this paper, we are interested only in the length of intervals determined by a

matrix G and the corresponding vector L(G).

 48

Example 1. Consider the matrix that corresponds to orthogonal array

OA(12, 2, 24), lexicographically ordered by rows
T

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0 1 1 1
.

0 0 1 0 1 1 0 1 1 0 0 1

0 1 0 0 1 1 1 0 1 0 1 0

G

 
 
 
 
 
 

The first column g1 consists of 6 zeroes and 6 ones. Its structure defines two

intervals for the second vector. Therefore, we can juxtapose the vector L(g1) = (6, 6)

to g1. The second vector g2 has to consists of two intervals, each of two cells. If

G2 = (g1 g2) then L(G2) = (3, 3, 3, 3). To the matrix G3 consisting of the first three

columns, we juxtapose the vector L(G3) = (2, 1, 1, 2, 1, 2, 2, 1). The vector,

corresponding to the matrix G, is L(G) = (1, 1, 1, 0, 1, 0, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0)

(including the empty cells).

Let G be an m×n matrix with lexicographically ordered rows. We denote by

Gi the matrix that consists of the first i columns of G, i = 1, …, n. Let

L(Gi) = (l1, l2, …, lk) be the corresponding vector with the lengths of the intervals.

Consider the vector v = (v1, v2, …, vl1, vl1+1, …, vl1+l2, …, vm).

We call v possible solution for (i + 1)-th column of G if:

 v1 ≤ v2 ≤ … ≤ vl1, vl1+1 ≤ … ≤ vl1+l2, …, vm–lk+1 ≤… ≤ vm;

 v satisfies condition (1), given above.

If v satisfies also condition (2), we call it solution.

Each solution v = (v1, v2, …, vm) can be written as a vector

 (1) () (1) () (1) ()

1 1 2 2
ˆ , ..., , , , , , , , ,s s s

k kv v v v v v v

where
()j

iv is the number of the coordinates of v in the i-th interval which are equal

to sj  S. We call v̂ the cellular form of v.

Example 2. Let consider the third column of the matrix G,

g3 = (001011011001). Since L(G2) = (3, 3, 3, 3), the cellular form of g3 is

3ĝ = (2, 1, 1, 2, 1, 2, 2, 1).

We associate with the solution v for the i-th column two types of intervals

– Lold(v̂) and Lnew(v̂). The first type, called old intervals, is presented by

Lold(v̂) = L(Gi–1). For the new intervals we have Lnew(v̂) = v̂ = L(Gi).

Example 3. The solution v represented by v̂ = (2, 1, 1, 2, 1, 2, 2, 1) corresponds

to Lold(v̂)=(3, 3, 3, 3), and defines the new intervals: Lnew(v̂)=(2, 1, 1, 2, 1, 2, 2, 1).

We would like to mention that for any two different solutions v and v for the

i-th column the vectors of the old intervals coincide, Lold(v̂ ) = Lold(v̂ ), but the

vectors of the new intervals Lnew(v̂ ) and Lnew(v̂ ) are different.

Take two solutions v and v for the i-th column. Let a = (a1, a2, …, as) and

b = (b1, b2, …, bs) be these sub-vectors (parts) of v̂  and v̂  that correspond to the

j-th old interval of v and v, respectively. We define a partition of a with respect to

b which is represented by the vector  (1) (2) () (1) (2) ()

1 1 1, , ..., , , , , ...,s s

s s sa a a a a a a

that satisfies the following two conditions:

 49

(1) (1) (2) ()... , 1,..., ;s

i i i ia a a b i s    

(2)
() () ()

1 2 ... , 1,..., .i i i

s sa a a a i s    

We denote this partition by a/b. This can be generalized for the vectors v̂  and

v̂ .

Example 4. Let v̂  = (1, 2, 2, 1, 2, 1, 1, 2) and v̂  = (2, 1, 1, 2, 1, 2, 2, 1). Then

(1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1) is one possibility for v/v.

Computing the partition of v with respect to v can be reduced to restricted

integer partition. This problem in our case can be defined as follows:

Problem 1. Let A, b1, …, bs be nonnegative integers. Find all s-tuples  1, ..., sa a

such that 1a + 2a +…+ sa = A and 0≤ ia ≤bi, i = 1, 2, …, s.

This problem is solved by Algorithm 2. We use this integer partition as follows:

Problem 2. Let a = (a1, …, as) and b = (b1, …, bs) be vectors of nonnegative

integers. Find all s2-tuples  (1) (2) () (1) (2) ()

1 1 1, , ..., , , , ...,s s

s s sa a a a a a such that

(1) (1) (1) (1) (1) (1)

1 2 1... , 0 ,s j j ja a a a a bh b      

(2) (2) (2) (2) (2) (2) (1)

1 2 2... , 0 ,s j j j ja a a a a bh b a       

. . .

(s) () () () () () (1) (1)

1 2 ... , ,s s s j s s

s s s j j j ja a a a a bh b a a         

where j = 1, 2, …, s.

This problem is solved by Algorithm 3.

4. Algorithm

In this section, we consider two main algorithms. The first one refers to finding the

solutions that corresponds to the partitioning of a with respect to the new intervals of

b. The second main algorithm is how to use the first algorithm for implementation of

backtracking for obtaining a complete solution.

Finding a solution depending on the intervals of another solution is a main step

in our algorithm. Also, to find solutions from every level i, we use partitioning of

integers. Let A and l1, l2, …, lj are integers. Our goal is to find all partitions of A, such

that a1 ≤ l1, a2 ≤ l2, …, aj ≤ lj and a1 + a2 + … + aj = A.

The algorithm (Algorithm 2) that solves this task is reduced to complete

restricted integer partition. For its implementation we use the following notation: with

s we denote the number of the symbols of given alphabet, with i – the number of the

current interval and with li we denote the size of this interval (li determines the

restriction of the partition, the i-th element cannot be greater than li). With A we

denote the number of a fixed element of the alphabet S and “help” shows whether A

can be partitioned in the rest of the cells (this true if A ≤ helpi). The set of all solutions

is denoted with SOL. At each step of the algorithm, a solution is given.

After the initialization of the auxiliary variable “help” (line 21), we invoke the

procedure Partition with parameters i = 1, A and s (line 22). If the number of the fixed

element of the alphabet is less than or equal to the size of the current cell, then this

 50

element is placed in this cell only and the procedure ends (line 2). Otherwise, if A can

be partitioned within an interval with the given size, we invoke recursively the

procedure Partition for the next cell of the interval (line 6). If the last cell is reached,

the return stage in the calling procedure is performed. In the second part of the

algorithm (line 9) the problem set in the beginning is solved, but with new value for

A and s – 1 steps.

Example 5. Let A = 3, s = 4 and L = (1, 2, 1, 1). For intervals with these sizes,

we have help = (4, 2, 1). The solution at first step of Algorithm 2 will be a = (1, 2, 0,

0). At the next step we have a = (1, 1, 1, 0). The solution at the third step of our

algorithm is a = (1, 1, 0, 1). As solution at Step 4, we will have a = (1, 0, 1, 1). The

solution at the final step is a = (0, 1, 1, 1).

When we fix all elements of the alphabet, the problem is reduced to solving the

following task. Let A1, A2, …, As are given. They correspond to the number of the

elements in the given alphabet. Also l1, l2, …, lj are given. We search for all partitions

of A1, A2, …, As such that A1 = (1) (1) (1)

1 2 ... ,ja a a   Ai = () () ()

1 2 ... ,i i i

ja a a  

(1) (2) ()

1 1 1 1... sa a a l    and
(1) (2) ()... s

i i i ia a a l    . For the implementation of

Algorithm 3 that solves this task, we use the notation as in Algorithm 2 with the

difference that level stores the current level.

After the standard initialization of of the required variables, the procedure

Partition2 is called with parameters A = 0, i = 1, s and level = 1 (line 30). If the

algorithm is at such a step that the first cell of the interval is current, a takes the

number of the next element of the alphabet as value (line 2). To initialize help and

alevel (referring to the solution for the current level), we use the additional procedures

init (line 2) and initl (lines 4, 12 and 21). If the number of the current symbol of the

alphabet is less than or equal to the size of the current cell, but we have not reached

the last level, we call recursively Partition for the next level (for the next symbol of

the alphabet, line 5).

Algorithm 2

1. procedure Partition(A, i, s)

2. if A ≤ li then ai  A; a  SOL; Print(SOL);

3. else

4. ai  li; A  A – li;

5. if A  helpi then

6. if i < s – 1 then Partition(A, i + 1, s);

7. else

8. if A ≤ li+1 then ai+1  A; a  SOL; Print(SOL);

9. while ai > 0 do

10. A + +; ai – –;

11. if A ≤ helpi then

12. if i < s – 1 then Partition(A, i + 1, s);

13. else

14. if A ≤ li+1 then ai+1  A; a  SOL; Print(SOL);

 51

15. procedure Main

16. Input: A: the number of a fixed element from S, s: the number of the

symbols of S

17. i  1;  i is the index of the current interval, global variable

18. SOL  0;  global variable

19. a  0;  the current solution, global variable

20. for j  2, 3, …, s do

21. helpj  ;s
i j il

22. Partition(A, i, s);

If the number of this symbol is larger than the cell size, then a takes the

corresponding values (line 7) and if we have not reached the last cell of the interval,

recursively call Partition2 for the next cell (line 9). Otherwise, if we have reached the

last cell of the interval and its size allows the number of the symbol to store into the

cell. The variable a takes this number as value (line 12). Again, if we have not reached

the last level, we recursively call Partition for the next (line 14).

Let consider all new intervals. With SOLi we denote the set of all solutions for

the current level i. Algorithm 4 finds the set SOLlevel. Generally, at the first step of

the algorithm, the set SOL contains only initial solution m, up to equivalence

(line 15). This solutions is cell written.

If we have reached level – the level of the complete solutions in the procedure

PartitionMain, we print the set of solutions SOLlevel, for example, in a file (line 2).

Otherwise, we find all possible solutions for the next step (line 5). Then we check

each of these possible solutions if it is a solution (whether it satisfies the conditions

for new column of the matrix, corresponding to the given combinatorial structure)

(line 8) and recursively call PartitionMain for the next level with SOLi+1 (line 9).

Algorithm 3

1. procedure Partition2(A, i, s, level)

2. if i = 1 then A  Alevel; init(level, s);

3. if A ≤ llevel,i then

4. alevel,i  A; initl(level, s, i); a  SOL; Print(SOL);

5. if level < s – 1 then Partition2(A, 1, s, level + 1);

6. else

7. alevel,i  llevel,i; A A – llevel,i;

8. if A ≤ helplevel,i then

9. if i < s – 1 then Partition2(A, i + 1, s, level));

10. else
11. if A ≤ llevel,i+1 then

12. alevel,i+1  A; initl(level, s, i);

13. a  SOL; Print(SOL);

14. if level < s – 1 then Partition2(A, 1, s, level + 1);

15. while alevel;i > 0 do

16. A + +; alevel,i – –;

 52

17. if A ≤ helplevel,i then

18. if i < s – 1 then Partition2(A, i + 1, s, level);

19. else
20. if A ≤ llevel,i+1 then

21. alevel,i+1  A; initl(level, s, i);

22. a  SOL; Print(SOL);

23. if level < s – 1 then Partition2(a, 1, s, level + 1);

24. procedure Main

25. Input: A1, A2, …, As, s: the number of the symbols of S

26. i  1;  i is the index of the current interval, global variable

27. SOL  0;  global variable

28. A  0  global variable

29. level  1  level is the current level, global variable

30. Partition2(a, i, s, level);

Algorithm 4

1. procedure PartitionMain(SOLi, i)

2. if i = level then Print(SOLlevel);

3. else

4. foreach a, b  SOLi do

5. find a/b (POS_SOLi+1 – all possible solutions for i + 1);

6. SOLi+1 = 0;

7. foreach c  POS_SOLi+1 do

8. if c is solution then c  SOLi+1;

9. PartitionMain(SOLi+1, i + 1);

10. procedure Main

11. Input: level: the current level

12. i  1;  global variable

13. m;  global variable

14. SOLi = 0;  global variable

15. m  SOLi;

16. PartitionMain(SOLi, i);

Acknowledgements: This research is supported by Bulgarian Science Fund under Contract DN-02-

2/13.12.2016.

 53

R e f e r e n c e s

1. B o u y u k l i e v, I. “Q-EXTENSION” – Strategy in Algorithms. – In: Proc. of International

Workshop ACCT, Bansko, Bulgaria, 2000, pp. 84-89.

2. B o u y u k l i e v a, S., I. B o u y u k l i e v. An Algorithm for Classifcation of Binary Self-Dual

Codes. – IEEE Trans. Inform. Theory, Vol. 58, 2012, pp. 3933-3940.

3. B r i n k m a n n, G. Generating Regular Directed Graphs. – Discrete Mathematics, Vol. 313, 2013,

pp. 1-7.

4. B u l u t o g l u, D. A., F. M a r g o t. Classification of Orthogonal Arrays by Integer Programming. –

Journal of Statistical Planning and Inference, Vol. 138, 2008, pp. 654-666.

5. D z h u m a l i e v a-S t o e v a, M., I. B o u y u l k i e v, V. M o n e v. Construction of Self-Orthogonal

Codes from Combinatorial Designs. – Problems of Information Transmissions, Vol. 48, 2012,

No 3, pp. 250-258.

6. H e d a y a t, A. S., N. J. A. S l o a n e, J. S t u f k e n. Orthogonal Arrays: Theory and Applications.

Springer, 1999.

7. K a s k i, P., P. R. J. Ö s t e r g a r d. Classification Algorithms for Codes and Designs. – Berlin,

Heidelberg, Springer-Verlag, 2006.

8. M c K a y, B. D. Isomorph-Free Exhaustive Generation. – J. Algorithms, Vol. 26, 1998, pp. 306-324.

9. S c h o e n, E. D., P. T. E e n d e b a k, M. V. M. N g u y e n. Complete Enumeration of Pure-Level

and Mixed-Level Orthogonal Arrays. – Journal of Combinatorial Designs, Vol. 18, 2009,

pp. 123-140.

Received 30.09.2017; Second Version 08.12.2017; Accepted 21.12.2017

