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Abstract: Some of the most important cryptographic characteristics of the Boolean 

and vector Boolean functions (nonlinearity, autocorrelation, differential uniformity) 

are connected with the Walsh spectrum. In this paper, we present several algorithms 
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techniques. In the end, we give some experimental results. 
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1. Introduction 

The use of modern Graphics Processing Units (GPUs) has become attractive for 

scientific computing which is due to its massive parallel processing capability. The 

highly parallel structure of the modern GPUs makes them more effective than 

general-purpose CPU for algorithms where processing of large blocks of data is done 

in parallel [12, 13]. Compared with multi-core CPUs, new generation GPUs can have 

much higher computational power and memory bandwidth. Therefore they are 

attractive in many application areas [13, 16, 21]. 

The purpose of this paper is to assess the performance of the recent, inexpensive 

and widely used NVIDIA GPUs in computing the Walsh Spectrum of a Boolean 

function. The Walsh (Hadamard, Walsh-Hadamard, Walsh-Fourier) transform has a 

wide range of applications. It is used in cryptography, signal and image processing, 

image rendering, data compression algorithms, quantum computing, etc. Here we 

present several variants of an algorithm. Our motivation to create different algorithms 

is due to the fact that there are various optimization strategies and techniques with 

specific characteristics. The first algorithm is the basic and easiest one. In order to 

obtain a better performance we make more complex algorithms with implementing 
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various optimization techniques. The last algorithm is designed for NVIDIA GPUs 

with compute capability 3.0 and higher [6]. 

There are many algorithms for computations connected with Walsh (Walsh-

Hadamard) Transform (see for example [10, 11]), there are also many commonly 

used implementations, tools, libraries and mathematical software for CPU, for 

example Sage [23], Matlab [17], VBF Library [1], SET (S-box Evaluation Tool) [22], 

etc. GPU-based implementations of Walsh Transform for accelerating the decoding 

process on Low-Density Parity-Check codes (LDPC codes) is given in [2, 5]. There 

are a few GPU libraries that realize butterfly algorithms, like cuFFT [20] and BPLG 

[15], but they do not include the Walsh transform. 

The paper is organized as follows. We describe the used GPU computing model 

with CUDA (Compute Unified Device Architecture) in Section 2. The main 

definitions connected with Boolean functions and Walsh spectrum are given in 

Section 3. We present there a sequential butterfly algorithm for calculating the Walsh 

spectrum using the binary representations of integers. Section 4 is devoted to the 

parallel algorithms. It includes six parallel realizations of the main algorithm. Some 

experimental results are given in Section 5. In the end we put a conclusion section. 

2. GPU computing model with CUDA 

GPUs are designed for efficient execution of thousands of threads in parallel on as 

many processors as possible at each moment. The computation processes are divided 

into many simple tasks that can be performed at the same time. This intensive multi-

threading allows execution of various tasks on the GPU processors while data is 

fetched from or stored to the GPU global memory, ensures the scalability of the GPU 

computing model, and support parallel programming model [6]. 

A simple way to understand the difference between CPU and GPU is to compare 

how they process tasks. A CPU consists of a few cores optimized for sequential serial 

processing while a GPU has a massively parallel architecture consisting of thousands 

of smaller, more efficient cores designed for handling multiple tasks simultaneously. 

This ability of a GPU with hundred and more cores to process thousands of threads 

can significantly accelerate the software over a CPU. 

In other words, traditional CPUs designs are latency-oriented and they have 

powerful ALU, large caches, sophisticated control. Their goal is to minimize the 

running time of a single sequential program by avoiding task-level latency whenever 

possible. Techniques such as out-of-order execution, speculative execution, and 

sophisticated memory caches, have been developed to help to minimize latency. On 

the other hand GPUs have aggressively throughput-oriented design with small 

caches, simple control, energy efficient ALUs and require massive number of threads 

to tolerate latency. Broadly speaking, throughput-oriented processors rely on three 

key architectural features and put emphasis on many simple processing cores, 

extensive hardware multithreading, and use of single-instruction, multiple-data, or 

SIMD, execution. To hide latency of frequent movement of data and reach full 

utilization, GPU typically requires thousands of threads and larger data sets. 
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Modern NVIDIA GPU is a powerful platform developed for general purpose 

computing using CUDA [7]. It allows programmers to interact directly with the GPUs 

and run programs on them, thus effectively utilizing the advantages of parallelization. 

Depending on architecture CUDA cores can be organized into Streaming 

Multiprocessors (SMs), each having a set of registers, constants and texture caches, 

and on-chip shared memory as fast as local registers (one cycle latency). At any given 

cycle, each core executes the Same Instruction on different Data (SIMD), and the 

communication between multi-processors is performed through global memory. 

CUDA C [6] is essentially C/C++ language with a few extensions and a runtime library 

that allows executing parallel functions on the GPU. As a programming interface, 

CUDA C is a programming language close to C by syntax, but conceptually and 

semantically it is quite different from C. The source code for CUDA applications 

consists of a mixture of conventional C/C++ host code and GPU device functions. The 

CUDA C compiler, nvcc separates the device functions from the host code. Then it 

compiles the device functions and the host code, but for the latter it uses the available 

C/C++ host compiler. At the linking stage, specific CUDA runtime libraries are added 

for supporting explicit GPU manipulation. 

The processing of the data flow has several steps. At the top level, we have a 

master process which runs on the CPU and performs the following steps: ini-tialises 

card, allocates memory in host (CPU) and on GPU (global) memory, copies data from 

the host (CPU) to GPU (global) memory, launches multiple instances of execution 

“kernel” on GPU, copies data from GPU (global) memory to host, deallocates all 

memory and terminates. 

Data-parallel functions are written in units called kernels. The kernels are 

executed over the stream of data by many threads on a device in parallel. Thread is a 

process that performs series of independent programming instructions and it is a 

single instance of the kernel. Creating and destroying of threads barely require 

resources (time), therefore they don’t have any significant impact on the 

performance. Threads are organized into blocks, which are sets of threads that can 

communicate and synchronize their execution. Maximum 1024 threads (512 threads 

for older GPU) per block can be launched. Each block is executed by a single SM, 

but SMs can execute multiple blocks simultaneously, depending on the specific GPU 

hardware [6]. First, a configuration on the kernel has to be made before to launch it. 

Triple angle brackets mark is used for kernel configuration. We define number of 

blocks and number of threads per block inside. Blocks and threads per block form a 

grid. All threads run the same code (the model SIMT – Single Instruction, Multiple 

Threads [14]). Each thread has an index (tID) that it uses to compute memory 

addresses and make control decisions. If there are M threads per block, the index of 

the current thread can be calculated from the index of the current block (blockIdx.x) 

and the number of the thread in that block (threadIdx.x) by the formula: 

tID = threadIdx.x + blockIdx.xM. 

The definition of the grid is given as follows: 

mykernel <<< blocks per grid, threads per block >>> (…); 

Each SM (Streaming Multiprocessor) organizes and executes threads in groups 

of 32 threads called “warps”. The execution alternates between “active” warps, with 
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warps becoming temporarily “inactive” while waiting for data. Each warp is treated 

separately. Usually all threads in the warp execute the same instruction at the same 

time. 

What happens if different threads in a warp need to do different things? This is 

called warp divergence. Such a situation can come with if then else construction for 

example (Fig. 1). Then CUDA generates a correct code to handle this. But in that 

case there is an execution delay because any thread executes one of both conditional 

branches and waits until other threads execute the other branch, so the execution cost 

is a sum of the costs of both branches. 

 
Fig. 1. Warp divergence 

 

A memory hierarchy has to be considered while a parallel code is being written. 

The execution speed depends on the proper use of the memory hierarchy. Lower level 

memories are faster but more expensive and more limited. The registers are the fastest 

followed by local memory, shared memory and global memory. General overview on 

GPU memory model is shown in Fig. 2. Every thread has access to his local memory. 

The data in shared memory can be shared between all threads of the same block. All 

threads from all kernels can access the global memory. Since blocks are executed in 

an arbitrary order, if one block modifies a data element, no other block should read 

or write that data element in the global memory. Except these types of memory, there 

are additional memory and variable types. Data is copied to GPU global memory 

before launching the kernel. 

 

 
Fig. 2. GPU memory model 
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The memory model shows the interaction of the threads. All threads within one 

copy can access local shared memory but cannot see what the other copies are doing 

(even if they are on the same multiprocessor). There are no guarantees on the order 

in which the copies will execute. Therefore, for the correct execution of the kernel, 

in some cases a synchronization of the threads in each block is needed. Instruction 

__syncthreads(); inserts a “barrier” synchronization. No thread in a block is allowed 

to proceed beyond this point until the rest threads have reached it. Global 

synchronization of all threads can be performed across separate kernel launches or 

with Fast Barrier Synchronization [24]. 

3. Boolean functions and Walsh spectrum 

Boolean functions play a critical role in cryptography, especially in the design of  

S-boxes which perform the substitutions in block ciphers. There are parameters of a 

Boolean function that are very important in this usage. Some of these parameters are 

connected with its Walsh spectrum [4]. 

A Boolean function f of n variables is a mapping from F2
n
 into F2, where  

F2 = {0, 1} is the field with two elements. The Truth Table TT(f) is the 2n-dimensional 

vector which has the function values of f as coordinates. We can consider the vectors 

in F2
n
 as binary representations of the integers in the interval [0, …, 2n – 1]. This 

consideration is very useful if we try to describe and explain some transformations of 

Boolean functions and related algorithms. Here we present efficient algorithms for 

calculating the Walsh spectrum. The basis is a matrix and vector multiplication. In 

our case the considered matrices have not only recursive structure but this structure 

is quite specific and enables a very effective (butterfly) multiplication. 

Walsh (Walsh-Hadamard) transform fW of the Boolean function f is the integer 

valued function fW : F2
n
  Z [4], defined by 

W ( ) ( ) ( )

2 2

( ) ( 1) ( 1) ( 1) ,f x a x a x f x

n nx F x F

f a 

 

       

where 1 1 2 2 ... .n na x a x a x a x     The values of fW are called Walsh coefficients. 

We show below that fW can be calculated using the multiplication of an Hadamard 

matrix Hn by the Polarity Truth Table of the Boolean function. 

Let S = {0, 1, 2, …, 2n – 1}. To any integer u  S we correspond its binary 

representation, written as an n-dimensional binary vector, namely u =(u1, u2, …, un). 

This means that u = u12
n–1 + u22

n–2 + … + un–121 + un, uiF2. Let  

Sset ={0, 1, 2,..., 2 1},n   and let ( )
mat
nS  be the 2nn matrix 

( ) T
mat {0, 1, 2,..., 2 1} .n nS    

The matrices ( )
mat
nS  can be defined recursively in the following way: 

( )

( 1) mat

mat ( )

mat

0
.

1

n

n

n

S
S

S


 

  
 

 

Consider the matrix  
T

( ) ( )

mat mat. .n n

nH S S   Obviously, 
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1 2

0 0 0 0

0 0 0 1 0 1
, .

0 1 0 0 1 1

0 1 1 0

H H 

 
 

        
 
 

 

According to the matrix multiplication rule we have 

0 0 0 1 0 2 1

1 0 1 1 1 2 1
.

2 1 0 2 1 1 2 1 2 1

n

n

n

n n n n

H 

 
 
 

  
 
 

    

 

It is easy to see that Hn
+ is a symmetric matrix. Its rows (and columns) are all 

vectors from an n dimensional vector subspace of 
2

2

n

F . In coding theory this subspace 

(without the zero coordinate) is known as a simplex code. This space together with 

its coset with representative (11 … 1) forms the first order Reed-Muller code [4]. 

Using the recurrence relation, we obtain 

 
   

( )
T

( 1) ( 1) mat
T T1 mat mat ( ) ( ) ( )

mat mat mat

00...0 11...10
. ,

1

n
n nn n

n n n n

n n

H HS
H S S

S S S H H

 

  


 

    
             

 

where H  is the negation of the binary matrix H. 

The polarity representation of a binary vector (matrix) is the vector (matrix) 

obtained after replacing 0 by (–1)0 = 1 and 1 by (–1)1. Denote by Hn the polarity 

representation of Hn
+. Since the negation for a binary matrix correspond to the 

multiplication by (–1) of its polarity representation, we have 

1 1

0 1 1 1

1 1

1 1
(1), , for 2.

1 1

n n

n n

n n

H H
H H H H H n

H H

 



 

  
       

   
 

The matrices Hn are Hadamard matrices of Sylvester type called also Sylvester 

matrices or Walsh matrices. 

Let f : F2
n  F2 be a Boolean function of n variables and TT(f) be its Truth Table, 

TT( ) ( (0), (1),..., (2 1)).nf f f f   The polarity representation of TT(f) is called the 

Polarity Truth Table and denoted by PTT(f). The foregoing implies that the Walsh 

spectrum of the Boolean function f is Wf = HnPTT(f) and its coordinates are the Walsh 

coefficients of f (in this equality PTT(f) and Wf are columns but we consider Wf also 

as a row depending on the particular case). 

To calculate the Walsh spectrum of a Boolean function, one can use also the 

Fast Walsh transform which can be given by a butterfly diagram and the 

corresponding algorithm with complexity O(n2n) (Fig. 3 [10]). The theoretical base 

of the Fast Walsh transform is given by G o o d  [9] and it follows from the 

factorization 

Hn = (H1I2k–1)(I2H1I2k–2)…(I2k–1H1). 
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A vector t of length 2n is transformed in n steps. In the beginning t = t(0) = PTT(f). 

For the first step we partition t(0) into 2n–1 pairs (t0, t1), (t2, t3), etc. The new vector is 

t(1) = (t0 + t1, t0 – t1, t2 + t3, t2 – t3, …, t2n–2 + t2n–1, t2n–2 – t2n–1). 

In the s-th step (1 ≤ s ≤ n) the vector (the table) is partitioned into intervals of 

length 2s (called size in the step), and apply suitable calculations as follows: 

(1)   
( ) ( 1) ( 1) ( ) ( 1) ( 1),s s s s s s

i i i j i j i i jt t t t t t   

       

for all i, 0 ≤ i < 2n, such that i ≡ 0, 1, …, 2s–1 – 1 (mod 2s),  j = 2s–1. 
 

 
Fig. 3. Fast Walsh Transform 

 

In [3], we have presented an algorithm (Algorithm 0) which uses the binary 

representations of the integers from the set S. This algorithm passes all elements of 

the matrix ( )

mat

nS  in n steps column by column starting from the last one. The array Wf 

is equal to t(s) after the s-th step. In the beginning, Wf = t(0) = PTT(f). The integer j is 

equal to 2s–1 in the s-th step. The only coordinate equal to 1 in the vector j
–
 is in the 

position n – s + 1. Depending on the value in the i-th row and (n – s + 1)-th column 

of the matrix ( )

mat

nS  the algorithm calculates the next values for Wf[i] and Wf[i + j]. 

After the n-th step, Wf is equal to the Walsh spectrum of the Boolean function. 

Fast Walsh transform can be implemented in parallel, by using the base concept 

of Algorithm 0. For the parallel adaptation, we use CUDA C and make several 

algorithms using various optimization techniques, models and different memory 

types to get better performance and efficiency. 

Algorithm 0.  Fast Walsh Transform 

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries 

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries 

j  1; Wf  PTT; 

while (j < 2n) do 

for i = 0 to 2n – 1 do 

if ((i&j) = 0) then 

temp  Wf[i]; 

Wf[i]  Wf[i] + Wf[i+j]; 

Wf[i + j]  temp – Wf[i + j]; 

end then 

end for 

j 2*j; 

end while. 
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4. Parallel implementation of Fast Walsh transform 

In this section we present several parallel algorithms realizing the Fast Walsh 

Transform (FWT). Each of them has improvements compared with the previous one. 

These algorithms are implemented in CUDA C. 

We use the following notations, constants and variables in the pseudo codes 

which describe the algorithms: 

 a&b, the bitwise AND operation of nonnegative integers a and b; 

 tID is the index of the current thread in the grid; 

 bID is the index of the current block; 

 tID_inblock is the index of the thread in the current block; 

 block_size shows the number of threads per block; 

 block_num is the number of blocks in the grid; 

 grid_size is the number of all threads in the grid,  

grid_size = block_numblock_size. 

Algorithm 1 is based on the sequential Algorithm 0 but with a suitable 

modification in order to implement it in parallel. All other algorithms are 

modifications of this algorithm. 

Algorithm 1.  Parallel Implementation of FWT 

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries 

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries 

Allocate memory for device copies and host copy 

Copy the input data from the host to the device 

Set a grid of blocks and threads 

size  2n; 

if (size <= 1024) then 

block_size  size; 

block_num  1; 

end then 

else                  /* if size > 1024 */ 

block_num  size=1024; 

block_size  1024; 

end else 

j  1; r  0; Wf  PTT; temp  0; 

while (j < size) do 

r  r + 1;            /* r is the number of the current step */ 

fwt_kernel(Wf , temp, r, j)            /*Launch kernel*/ 

j  2*j;                   /* j is the size of the current step */ 

end while 

if r is odd then Wf   temp; 

Copy the result back to host 

Cleanup memory 
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fwt_kernel(Wf, temp, r, j)  Kernel, Algorithm 1 

Input: The arrays Wf and temp with 2n entries, and the integers r and j 

Output: The arrays Wf and temp 

Init tID; 

i  tID;                     /* index of the thread */ 

if r is odd then        /* This determines where to save the intermediate result */ 

if ((i&j) = 0) then 

value  (Wf[i] + Wf[i + j]); 

end then 

else 

value  (–Wf[i] + Wf[i – j]); 

end else 

temp[i]  value; 

end then 

else 

if ((i&j) = 0) then 

value  (temp[i] + temp[i + j]); 

end then 

else 

value  (–temp[i] + temp[i – j]); 

end else 

Wf[i]  value; 

end else 

The kernel (fwt_kernel) in Algorithm 1 uses two arrays, namely Wf and temp, 

and two integer variables r and j, where r is the number of the current step, and j is 

the size of the current step in the butterfly algorithm. In any step the kernel takes data 

from one of the arrays, depending on the step, calculates values for the current step 

of the butter y algorithm, and writes the result in the other array. It is impossible to 

use only one array in this simple implementation, because there is no global 

synchronization in the kernel between the threads in different blocks. In fact, the 

synchronization is achieved by launching the kernel n times from the main 

(sequential) program. 

We have to mention that Algorithm 1 has not very good performance because 

the kernel uses global arrays at any step. Practically, the time for launching the kernel 

(creating and destroying threads) is negligible. 

In some cases, warp divergence can lead to a big loss of parallel efficiency,  

and this is one of the things we should pay attention to. Therefore we propose  

Algorithm 2 which is a modification of Algorithm 1. The difference is only in the 

kernel where the statement if else is replaced by an algebraic expression to avoid 

warp divergence. The expression is 

value  (1 – ii)*(Wf[i] + Wf[i + j]) + ii*(–Wf[i] + Wf[i – j]). 

The variable ii takes two values, ii = 0 if i&j = 0, and ii = 1 otherwise. 
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fwt_kernel_no_if(Wf, temp, r, j) Kernel, Algorithm 2 

Input: The arrays Wf and temp with 2n entries, and the integers r and j 

Output: The arrays Wf and temp 

Init tID; 

i  tID;                 /* index of the thread */ 

ii  (i&j)/j;         /* Conditional variable */  

if r is odd then 

value  (1 – ii)*(Wf[i] + Wf[i + j]) + ii*(–Wf[i] + Wf[i – j]);  

temp[i]  value; 

end then 

else 

value  (1 – ii)*(temp[i] + temp[i + j]) + ii*(–temp[i] + temp[i – j]);  

Wf[i]  value; 

end else 

Algorithm 3 is a modification of Algorithm 1. In this algorithm, any thread 

executes more computations. The pseudo code of the parallel implementation is 

shown in Algorithm 3. 

Algorithm 3 takes the same input as Algorithm 1, with an additional parameter 

M. In the previous algorithms, any thread calculates only one value for the current 

step in the butterfly algorithm. In Algorithm 3, any thread calculates M values. We 

would like to see how this affects the performance. This is the reason to present this 

new algorithm. Actually, we only add for loop in the kernel: 

for i = tID*M  to  (tID + 1)*M – 1  do. 

In addition, the grid configuration depends on M. For computing the same Walsh 

spectrum, larger M means less number of threads and more work per thread. An 

example of the grid configuration is shown in pseudo code above. 

Algorithm 3. Parallel Implementation of FWT 

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries, 

and an integer M = 2s, s < n 

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries 

Allocate memory for device copies and host copy 

Copy the input data from the host to the device 

Set a grid of blocks and threads, the grid con guration depends on M 

size  2n; 

if (size/M <= 1024) then 

block_size  size/M; 

block_num  1; 

end then 

else         /* if size/M > 1024 */ 

block_num  (size/M)/1024; 

block_size  1024; 

end else 

j  1; r  0; Wf  PTT; 
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while (j < 2n) do 

r  r + 1; 

fwt_kernel_M(Wf, temp, r, j, M)    /*Launch kernel*/ 

j  2*j; 

end while 

if r is odd then Wf  temp; 

Copy the result back to host 

Cleanup memory 

fwt_kernel_M(Wf, temp, r, j, M)  Kernel, Algorithm 3 

Input: The arrays Wf and temp with 2n entries, and the integers r, j, M 

Output: The arrays Wf and temp 

Init tID; 

for i from tID*M to (tID + 1)*M – 1 do 

if r is odd then 

if ((i&j) = 0) then 

value  (Wf[i] + Wf[i + j]); 

end then 

else 

value  (–Wf[i] + Wf[i – j]); 

end else 

temp[i]  value; 

end then 

else 

if ((i&j) = 0) then 

value  (temp[i] + temp[i + j]); 

end then 

else 

value  (–temp[i] + temp[i – j]); 

end else 

Wf[i]  value; 

end else 

end for 

Algorithm 4 uses shared memory combined with the kernel from Algorithm 1. 

At first stage, we use shared memory for calculations until a certain step (depending 

on the shared memory limitation). After that we use global memory for computations. 

The pseudo code is shown in Algorithm 4. 

Algorithm 4 has two kernels. The first one uses shared memory for calculations 

until a certain step. It can launch maximum 1024 threads per block. (because of the 

limitation of GPU) and the data is shared between all threads from the same block. If 

n > 10 the dimension of the vector considered is larger than 1024. Therefore the array 

of size 2n can be partitioned into parts of length 1024. Each of these parts is copied 

into a special type of memory, and this is the shared memory of the corresponding 

block. The writing and reading in the shared memory is considerably faster. 
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Moreover, the writing and reading in this memory can be synchronized in CUDA 

terms. This allows the kernel to do all calculations for a fixed number of steps in the 

Fast Walsh Transform (which is 10 steps for 1024 threads). In the eleventh step, the 

FWT uses data from different parts of the array and therefore we go out of the size of 

the shared memory and we have to use the global memory again. For that we use the 

second kernel. 

Algorithm 4. Parallel implementation of FWT 

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries 

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries 

Allocate memory for device copies and host copy 

Copy the input data from the host to the device 

Set a grid of blocks and threads 

size  2n; 

if (size <= 1024) then 

block_size  size; 

block_num  1; 

end then 

else         /* if size > 1024 */ 

block_num  size/1024; 

block_size  1024; 

end else 

Wf  PTT; 

fwt_kernel_SM(Wf, block_size)   /*Launch Shared memory, Kernel*/ 

j  1024; r  10; 

while (j < 2n) do 

r  r + 1; 

fwt_kernel(Wf, temp, r, j)        /*Kernel, Algorithm 1*/ 

j  2 * j; 

end while 

if r is odd then Wf  temp; 

Copy the result back to host 

Cleanup memory 

fwt_kernel_SM(Wf, block_size)  Kernel, Algorithm 4 

Input: The array Wf with 2n entries, and block size 

Output: The array Wf 

Declare shared memory as the array tmpsdata of length block_size  

Init tID, tID_inblock; 

i  tID_inblock; 

value  Wf[tID];    /*Local variable for every thread, taken from Wf */ 

j  1; 

while j < block_size do 

tmpsdata[i]  value; 

__syncthreads(); 
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if ((i&j) = 0) then 

value  (value + tmpsdata[i + j]); 

end then 

else 

value  (–value + tmpsdata[i – j]); 

end else 

__syncthreads(); 

j  2*j; 

end while 

Wf[tID]  value; 

After starting the kernel, a shared memory is declared, and data is written from 

Wf to the shared memory. Each thread takes two elements from the shared memory, 

add or subtract them, and stores the result in a local variable. At the end of the step 

threads have to be synchronized. 

After passing the first kernel, the algorithm launches the second kernel if needed 

(if n > 10). The second kernel is fwt_kernel from Algorithm 1. 

Algorithm 5. Parallel Implementation of FWT 

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries 

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries 

Allocate memory for device copies and host copy 

Copy the input data from the host to the device 

Set a grid of blocks and threads 

size  2n; 

if (size <= 1024) then 

block_size  size; 

block_num  1; 

end then 

else           /* if size > 1024 */ 

block_num  size/1024; 

block_size  1024; 

end else 

Wf  PTT; 

fwt_kernel_SM(Wf, block_size)    /*Kernel, Algorithm 4*/ 

if (size > 1024) then           /* Shared memory + Memory pattern */ 

fwt_kernel_SM_MP(Wf, block_num) 

end then 

Copy the result back to host 

Cleanup memory 

Algorithm 5, we use shared memory combined with a memory pattern. The 

memory pattern is used for tracking the intermediate results from the steps of the 

calculation (this limitation comes from the shared memory). Here we obtain better 

performance compared with the other algorithms. This algorithm is designed for 
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maximum 220 entries or the maximum length of the used vector can be 220. We show 

the pseudo code in Algorithm 5. 

Algorithm 5 has two kernels. The first kernel is fwt_kernel_SM – the first kernel 

of Algorithm 4. The difference between Algorithm 4 and Algorithm 5 comes after 

finishing this kernel. The second kernel is similar to the first kernel but with the 

adding a memory pattern. After the first kernel we have to sum the elements Wf [0] 

and Wf[1024], Wf[1] and Wf[1025], etc., but they are in different blocks, so in different 

shared memories. The memory pattern rearranges the shared memory in such a way 

that the memory elements from different blocks are set in order to perform FWT from 

the beginning. 

The arrangement is given by the following expression: 

ji = (tID_inblock)*block_num + bID. 

The easiest way to explain it is by using a two dimensional array (a matrix). 

Suppose that we have put the elements of the grid into a block_num  1024 matrix G 

such that the elements from the i-th block are set in the i-th row. Then the number of 

the rows coincides with the number of the blocks, and the number of the columns is 

the number of the threads in corresponding blocks. So the element in the i-th row and 

j-th column correspond to the j-th thread (j=tID_inblock) in i-th block (i=bID) which 

means that the thread with index tID reads Wf[tID]. It is not difficult to calculate the 

global index of this thread in the grid tID = 1024*i + j = 1024*bID + tID_inblock. 

To rearrange the memory, we transpose the matrix G. Then the thread with index tID 

reads the value from Wf[ji], ji = block_num*j + i = (tID_inblock)*block_num + bID, 

and writes it in the cell with number tID_inblock of the shared memory. After the last 

step the kernel writes the obtained result in Wf[ji]. 

In Fig. 4 we show memory movement for Boolean function f of 11 variables, 

which means that the vector Wf has 2048 entries. 
 

 
Fig. 4. Memory pattern for a Boolean function f, with 2048 entries 

 

In Algorithm 6, we use warp shuffles. Warp shuffle is a machine instruction for 

NVIDIA GPUs with compute capability 3.0 and higher. Threads are executed in 

warps and any warp contains 32 threads. All threads in the warp execute the same 

instruction at the same time. Warp shuffles give a mechanism for moving data (values 

of local register variables) between threads in the same warp, without using any 

shared memory. There are 4 variants of warp shuffles, but for our need we use  

__shfl_xor(a, i) where a is a local register variable, and i is an integer, 0 < i < 16 [8]. 

Then all threads in the warp are partitioned into 16 pairs, namely the threads with 

indexes (0, i), (1, i + 1), …, (31 – i, 31). 
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The value of the variable a in a thread becomes available for the other thread in 

the pair (Fig. 5). 
 

 
Fig. 5. Warp shuffles, __shfl_xor 

 

Algorithm 6 has two kernels. The first kernel combines __shfl_xor and shared 

memory for calculations until certain steps. From the limitation of the shared 

memory, the combination of __shfl_xor and shared memory can calculate up to 10 

step of FWT (minimum 5 steps). The first kernel is similar to the first kernel from 

Algorithm 4, with additional __shfl_xor part segment as it is shown below: 

j  1 

while j < 32 do 

ii  (i&j)/j; 

value ii*(__shfl_xor(value, j) – value)+(1–ii)*(__shfl_xor(value, j)+value); 

j  2*j 

end while 

In this segment, we make FWT on a level of warp. The wrap shuffle __shfl_xor 

does all the work here and the expression here is similar to expression from  

Algorithm 2. 

The second kernel here is similar to the first kernel with additional memory 

pattern. We have already mentioned that the memory pattern is used to rearrange the 

memory in such a way that memory elements from different blocks are set in order 

to perform FWT from the first step. After a certain number of steps we do a 

rearrangement again. The additional parameter for_shfl is a check condition for the 

construction __shfl_xor in case if there are less than five steps of computations with 

the second kernel. 

Algorithm 6. Parallel implementation of FWT 

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries 

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries 

Allocate memory for device copies and host copy 

Copy the input data from the host to the device 

Set a grid of blocks and threads 

size  2n; 

if (size <= 1024) then 

block_size  size; 

block_num  1; 
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end then 

else     /* if size > 1024 */ 

block_num  size/1024; 

block_size  1024; 

for_shfl  block_num; 

if (block_num > 32) then 

for_shfl  32; 

end then 

end else 

Wf  PTT; 

fwt_kernel_shfl_xor_SM(Wf, block_size)   /* Warp shuffles-Shared memory*/ 

if (size > 1024) then 

fwt_kernel_shfl_xor_SM_MP(Wf, block_num, for_shfl) 

/* Warp shuffles-Shared memory-Memory pattern */ 

end then 

Copy the result back to host 

Cleanup memory 

fwt_kernel_shfl_xor_SM(Wf , block_size)  Kernel, Algorithm 6 

Input: The array Wf with 2n entries, and block_size 

Output: The array Wf 

Declare shared memory as the array tmpsdata of length block size  

Init tID, tID_inblock; 

i  tID_inblock; 

value  Wf [tID];  /*Local variable for every thread, taken from Wf */ 

j  1; 

while j < 32 do 

ii  (i&j)/j; 

valueii*(__shfl_xor(value, j)–value)+(1–ii)*(__shfl_xor(value, j)+value); 

j  2*j; 

end while 

while j < block_size do 

tmpsdata[i]  value; 

__syncthreads(); 

if ((i&j) = 0) then 

value  (value + tmpsdata[i + j]); 

end then 

else 

value  (–value + tmpsdata[i – j]); 

end else 

__syncthreads(); 

j  2*j; 

end while 

Wf [tID]  value; 
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fwt_kernel_sh_xor_SM_MP(Wf, block_num, for_shfl)  Kernel, Algorithm 6 

Input: The array Wf with 2n entries, and block_ size 

Output: The array Wf 

Declare shared memory as the array tmpsdata of length block_size  

Init tID, tID_inblock; 

i  tID_inblock; 

ji = (tID_inblock)*block_num + bID; 

value  Wf [ji];    /*Local variable for every thread, taken from Wf */ 

j  1; 

while j < for_shfl do 

ii  (i&j)/j; 

value  ii*(__shfl_xor(value, j) – value)+(1 – ii)*(__shfl_xor(value, j)+ 

value); 

j  2*j; 

end while 

while j < block_num do 

tmpsdata[i]  value; 

__syncthreads(); 

if ((i&j) = 0) then 

value  (value + tmpsdata[i + j]); 

end then 

else 

value  (–value + tmpsdata[i – j]); 

end else 

__syncthreads(); 

j  2*j; 

end while 

Wf [ji]  value; 

 
Table 1. Description of the test platforms 

Environment Platform 1 Platform 2 

CPU Intel i3-3110M Intel Xeon E5-2640 

Memory 4 GB DDR3 1333 MHz 48GB DDR3 1333 MHz 

OS Win764 SP1 Win764 SP1 

Compiler MSVC 2010 MSVC 2012 

GPU GeForce GT 740M GeForce GTX TITAN 

Driver v347.62, SDK 7.0 v347.62, SDK 7.0 

 

Experimental evaluations and the time efficiency of all algorithms are shown in 

the next section. 
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5. Experimental evaluation 

In this section we present our experimental results. The test platforms that were used 

in our experiments are described in Table 1. Platform 1, a graphic card NVIDIA 

GeForce GT 740M [18], has 384 cores running at 0.9 GHz and 28.8 GB/s memory 

bandwidth. Platform 2, a graphic card NVIDIA GeForce GTX TITAN [19], has 2688 

cores running at 837 MHz and 288.4 GB/s memory bandwidth. All algorithms are 

implemented in parallel computing platform and programming model CUDA [6]. We 

have used CUDA Toolkit 7.0 and development environment MS Visual Studio 2010 

for Platform 1 and the same version CUDA Toolkit 7.0 but MS Visual Studio 2012 

as a development environment for Platform 2. Program are executed in Active 

solution configuration-Release, and Active solution platform-Win32. We denote 

Platform 1 by P1 and Platform 2 by P2. 

We run the programs with input array with 2n entries for n = 7, …, 18. All data 

resides in GPU device memory at the beginning of each test so there is no data 

transfer to CPU. This prevents interaction with other significant factors in this study. 

For the purposes of comparison, we implement Algorithm 0 sequentially in 

programming language C++ using development environment MS Visual Studio 2010. 

All CPU examples are executed on Platform 1 (Intel i3-3110M) in Active solution 

configuration – Release, and Active solution platform Win32. 

Fig. 6 shows the execution time for calculating the Walsh spectrum for different 

number of threads per block (Algorithm 1, Platform 1). The blue and the red lines 

show the execution time for calculating the Walsh spectrum of a Boolean function of 

16 variables, but the red line presents the program which does not use synchronization 

(in some cases the program without synchronization does not give a right answer but 

the synchronization slows down the execution time). The green line shows the 

execution time for calculating the Walsh spectrum of a Boolean function of 15 

variables (in this case the spectrum is a vector with 215 coordinates). Looking at the 

graphic, we can conclude that we have the fastest execution time if we use 128 threads 

per block. But the increase in the execution time for 1024 threads per block is 

relatively small. 
 

 
Fig. 6. Relation between time and number of threads per block (Platform 1) 
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The results for different values of the parameter M versus execution time 

(Algorithm 3, Platform 1) for a Boolean function with 16 variables is shown on  

Fig. 7. We see, that if there are less threads but any thread calculates more. 

Walsh coefficients, the execution time increases. In Fig. 7, M = 32/2048 means 

that the grid has 2048 threads, and any thread calculates M = 32 coefficients. 

 
Fig. 7. Work (M) per thread vs. execution time (Platform 1) 

 

The comparison between the CPU Algorithm 0, and the parallel algorithms 

(Platform 1) is shown in Fig. 8. We denote Algorithm 1 by A1, Algorithms 4, 5 and 

6 by A4, A5 and A6, respectively. The blue line represents the CPU Algorithm 0’s 

implementation in C++, and the other lines shows the performance of Algorithms  

1, 4, 5, 6. Obviously, there is a point in which the GPU implementation becomes 

faster (detailed results for the execution time are shown in Table 2). 
 

 
Fig. 8. CPU vs. different GPU implementations (Platform 1) 

 

A comparison between the first, fourth, fifth and sixth parallel algorithms is 

shown in Fig. 9 (Platform 1). The parallel implementation algorithms are colored. As 

we have expected, every further algorithm has better execution time than the previous 

one for larger n. 
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Fig. 9. Time for calculating Wf - GPU implementations (Platform 1) 

 

One of our main goals is to achieve acceleration of the speedup between the 

sequential and parallel implementation where the speedup is given by the formula 

0
p

p

( )
.

( )

T n
S

T n
  

Here n is the size of the input data (in our case the number of variables of the Boolean 

function), T0(n) is the execution time of the fastest known sequential algorithm, and 

Tp(n) is the execution time of the parallel algorithm. 

Table 2 shows the execution times (in ms) of the implementations of CPU and 

GPU algorithms for different sizes of the input data, as well as the speedups for the 

different GPU implementations. The speedup of the parallel algorithm with number 

i is denoted by Si, i = 1, …, 6. We see in the table that CPU is faster for small n. For 

larger n, more threads are used and therefore the computation is faster than in the case 

of sequential programming. The fourth, fifth and sixth algorithms shows that the size 

has to be at least 256 in order to have faster GPU than CPU implementation. 

However, there are limitations for the size of input data which depend on the problem, 

the algorithm, GPUs, the libraries, the model, etc. 
 

Table 2. CPU vs. GPU implementations, Platform 1 

Size CPU (ms) A1 (ms) S1 A4 (ms) S4 A5 (ms) S5 A6 (ms) S6 

27 0.003 0.024 < 1 0.0066 < 1 0.0066 < 1 0.0056 < 1 

28 0.007 0.026 < 1 0.0066 1.060 0.0066 1.060 0.0057 1.222 

29 0.015 0.028 < 1 0.0069 2.272 0.0069 2.272 0.0058 2.547 

210 0.033 0.034 < 1 0.0071 4.647 0.0071 4.647 0.0059 5.584 

211 0.068 0.039 2 0.013 5.230 0.0124 5.483 0.0116 5.862 

212 0.145 0.048 3.02 0.019 7.631 0.0147 9.863 0.0119 12.156 

213 0.308 0.062 4.967 0.026 11.84 0.023 13.39 0.0174 17.647 

214 0.665 0.096 6.927 0.048 13.85 0.052 12.78 0.0366 18.085 

215 1.148 0.165 6.961 0.1 11.48 0.13 8.836 0.0965 11.901 

216 3.116 0.366 8.513 0.24 12.98 0.28 11.12 0.2042 15.259 

217 6.87 1.561 4.401 0.85 8.082 0.595 11.54 0.5379 12.771 

218 14.81 3.571 4.149 2.058 7.207 1.207 12.27 1.1187 13.245 
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Another interesting observation (Table 2) for the fourth and fifth algorithms is 

about the intersection on time execution. In one point memory pattern has higher 

price (spend more time on memory movement) than shared memory computation. 

Also for sixth algorithm we can observe the time execution for 1024 to 2048 how 

climbing doubles. This duplication is due to the memory pattern or time spent to 

rearrange the memory. 

Experimental results for Platform 2 are shown in Fig. 10. We included only tests 

for n = 14, …, 18, in the graphic because there is no significant improvement for 

smaller n compared with Platform 1. 

 
Fig. 10. Time for calculating [Wf ] GPU implementation (Platform 2) 

 

Fig. 11 shows a comparison between Platform 1 and Platform 2 for the best 

Algorithm (Algorithm 6). As we can see in Fig. 11 the difference between execution 

times of both platforms increases with the size of data. In Table 3 we give some 

details for the comparison between Platform 1 and Platform 2 for Algorithm 6. This 

gap is due to the fact that Platform 2 GPU has better hardware performance. 

 

Fig. 11. Running time (Algorithm 6): Platform 1 vs. Platform 2 
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Table 3. Algorithm 6: Platform 1 vs. Platform 2 and CPU vs. Platform 2(A6)  

Size A6,P1(ms) A6,P2(ms) SpA6:P1vsP2 CPU(ms) Sp:CPUvs(A6)P2 

214 0.036 0.021 1.71 0.665 31.66 

215 0.096 0.027 3.55 1.148 42.51 

216 0.204 0.048 4.25 3.116 64.91 

217 0.537 0.084 6.40 6.87 81.78 

218 1.118 0.142 7.87 14.81 104.30 

6. Conclusion 

In this paper, we present parallel algorithms for computing the Walsh spectrum of a 

Boolean function with widely used NVIDIA GPUs. We show how the basic 

algorithm can be improved in order to obtain better performance. Here we compare 

algorithms with and without synchronization, memory pattern, wrap shuffles, etc. By 

choosing proper optimization techniques and appropriate methods, the efficiency and 

performance can be increased. 

To measure the execution time, we execute the program million times and take 

the average execution time. However, a deviation of 5% may occur in next 

measuring of the execution time for the same size. 
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