
 21

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 18, No 5

Special Thematic Issue on Optimal Codes and Related Topics

Sofia  2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0018

Parallel Fast Walsh Transform Algorithm and Its Implementation

with CUDA on GPUs

Dusan Bikov1, Iliya Bouyukliev2
1Faculty of Computer Science, Goce Delchev University, Shtip, Macedonia
2Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

E-mails: dusan.bikov@ugd.edu.mk iliyab@math.bas.bg

Abstract: Some of the most important cryptographic characteristics of the Boolean

and vector Boolean functions (nonlinearity, autocorrelation, differential uniformity)

are connected with the Walsh spectrum. In this paper, we present several algorithms

for computing the Walsh spectrum implemented in CUDA for parallel execution on

GPU. They are based on the most popular sequential algorithm. The algorithms differ

in the complexity of implementations, resources used, optimization strategies and

techniques. In the end, we give some experimental results.

Keywords: Walsh transform, CUDA C, GPU, Fast Walsh transform, Parallel

algorithms.

1. Introduction

The use of modern Graphics Processing Units (GPUs) has become attractive for

scientific computing which is due to its massive parallel processing capability. The

highly parallel structure of the modern GPUs makes them more effective than

general-purpose CPU for algorithms where processing of large blocks of data is done

in parallel [12, 13]. Compared with multi-core CPUs, new generation GPUs can have

much higher computational power and memory bandwidth. Therefore they are

attractive in many application areas [13, 16, 21].

The purpose of this paper is to assess the performance of the recent, inexpensive

and widely used NVIDIA GPUs in computing the Walsh Spectrum of a Boolean

function. The Walsh (Hadamard, Walsh-Hadamard, Walsh-Fourier) transform has a

wide range of applications. It is used in cryptography, signal and image processing,

image rendering, data compression algorithms, quantum computing, etc. Here we

present several variants of an algorithm. Our motivation to create different algorithms

is due to the fact that there are various optimization strategies and techniques with

specific characteristics. The first algorithm is the basic and easiest one. In order to

obtain a better performance we make more complex algorithms with implementing

 22

various optimization techniques. The last algorithm is designed for NVIDIA GPUs

with compute capability 3.0 and higher [6].

There are many algorithms for computations connected with Walsh (Walsh-

Hadamard) Transform (see for example [10, 11]), there are also many commonly

used implementations, tools, libraries and mathematical software for CPU, for

example Sage [23], Matlab [17], VBF Library [1], SET (S-box Evaluation Tool) [22],

etc. GPU-based implementations of Walsh Transform for accelerating the decoding

process on Low-Density Parity-Check codes (LDPC codes) is given in [2, 5]. There

are a few GPU libraries that realize butterfly algorithms, like cuFFT [20] and BPLG

[15], but they do not include the Walsh transform.

The paper is organized as follows. We describe the used GPU computing model

with CUDA (Compute Unified Device Architecture) in Section 2. The main

definitions connected with Boolean functions and Walsh spectrum are given in

Section 3. We present there a sequential butterfly algorithm for calculating the Walsh

spectrum using the binary representations of integers. Section 4 is devoted to the

parallel algorithms. It includes six parallel realizations of the main algorithm. Some

experimental results are given in Section 5. In the end we put a conclusion section.

2. GPU computing model with CUDA

GPUs are designed for efficient execution of thousands of threads in parallel on as

many processors as possible at each moment. The computation processes are divided

into many simple tasks that can be performed at the same time. This intensive multi-

threading allows execution of various tasks on the GPU processors while data is

fetched from or stored to the GPU global memory, ensures the scalability of the GPU

computing model, and support parallel programming model [6].

A simple way to understand the difference between CPU and GPU is to compare

how they process tasks. A CPU consists of a few cores optimized for sequential serial

processing while a GPU has a massively parallel architecture consisting of thousands

of smaller, more efficient cores designed for handling multiple tasks simultaneously.

This ability of a GPU with hundred and more cores to process thousands of threads

can significantly accelerate the software over a CPU.

In other words, traditional CPUs designs are latency-oriented and they have

powerful ALU, large caches, sophisticated control. Their goal is to minimize the

running time of a single sequential program by avoiding task-level latency whenever

possible. Techniques such as out-of-order execution, speculative execution, and

sophisticated memory caches, have been developed to help to minimize latency. On

the other hand GPUs have aggressively throughput-oriented design with small

caches, simple control, energy efficient ALUs and require massive number of threads

to tolerate latency. Broadly speaking, throughput-oriented processors rely on three

key architectural features and put emphasis on many simple processing cores,

extensive hardware multithreading, and use of single-instruction, multiple-data, or

SIMD, execution. To hide latency of frequent movement of data and reach full

utilization, GPU typically requires thousands of threads and larger data sets.

 23

Modern NVIDIA GPU is a powerful platform developed for general purpose

computing using CUDA [7]. It allows programmers to interact directly with the GPUs

and run programs on them, thus effectively utilizing the advantages of parallelization.

Depending on architecture CUDA cores can be organized into Streaming

Multiprocessors (SMs), each having a set of registers, constants and texture caches,

and on-chip shared memory as fast as local registers (one cycle latency). At any given

cycle, each core executes the Same Instruction on different Data (SIMD), and the

communication between multi-processors is performed through global memory.

CUDA C [6] is essentially C/C++ language with a few extensions and a runtime library

that allows executing parallel functions on the GPU. As a programming interface,

CUDA C is a programming language close to C by syntax, but conceptually and

semantically it is quite different from C. The source code for CUDA applications

consists of a mixture of conventional C/C++ host code and GPU device functions. The

CUDA C compiler, nvcc separates the device functions from the host code. Then it

compiles the device functions and the host code, but for the latter it uses the available

C/C++ host compiler. At the linking stage, specific CUDA runtime libraries are added

for supporting explicit GPU manipulation.

The processing of the data flow has several steps. At the top level, we have a

master process which runs on the CPU and performs the following steps: ini-tialises

card, allocates memory in host (CPU) and on GPU (global) memory, copies data from

the host (CPU) to GPU (global) memory, launches multiple instances of execution

“kernel” on GPU, copies data from GPU (global) memory to host, deallocates all

memory and terminates.

Data-parallel functions are written in units called kernels. The kernels are

executed over the stream of data by many threads on a device in parallel. Thread is a

process that performs series of independent programming instructions and it is a

single instance of the kernel. Creating and destroying of threads barely require

resources (time), therefore they don’t have any significant impact on the

performance. Threads are organized into blocks, which are sets of threads that can

communicate and synchronize their execution. Maximum 1024 threads (512 threads

for older GPU) per block can be launched. Each block is executed by a single SM,

but SMs can execute multiple blocks simultaneously, depending on the specific GPU

hardware [6]. First, a configuration on the kernel has to be made before to launch it.

Triple angle brackets mark is used for kernel configuration. We define number of

blocks and number of threads per block inside. Blocks and threads per block form a

grid. All threads run the same code (the model SIMT – Single Instruction, Multiple

Threads [14]). Each thread has an index (tID) that it uses to compute memory

addresses and make control decisions. If there are M threads per block, the index of

the current thread can be calculated from the index of the current block (blockIdx.x)

and the number of the thread in that block (threadIdx.x) by the formula:

tID = threadIdx.x + blockIdx.xM.

The definition of the grid is given as follows:

mykernel <<< blocks per grid, threads per block >>> (…);

Each SM (Streaming Multiprocessor) organizes and executes threads in groups

of 32 threads called “warps”. The execution alternates between “active” warps, with

 24

warps becoming temporarily “inactive” while waiting for data. Each warp is treated

separately. Usually all threads in the warp execute the same instruction at the same

time.

What happens if different threads in a warp need to do different things? This is

called warp divergence. Such a situation can come with if then else construction for

example (Fig. 1). Then CUDA generates a correct code to handle this. But in that

case there is an execution delay because any thread executes one of both conditional

branches and waits until other threads execute the other branch, so the execution cost

is a sum of the costs of both branches.

Fig. 1. Warp divergence

A memory hierarchy has to be considered while a parallel code is being written.

The execution speed depends on the proper use of the memory hierarchy. Lower level

memories are faster but more expensive and more limited. The registers are the fastest

followed by local memory, shared memory and global memory. General overview on

GPU memory model is shown in Fig. 2. Every thread has access to his local memory.

The data in shared memory can be shared between all threads of the same block. All

threads from all kernels can access the global memory. Since blocks are executed in

an arbitrary order, if one block modifies a data element, no other block should read

or write that data element in the global memory. Except these types of memory, there

are additional memory and variable types. Data is copied to GPU global memory

before launching the kernel.

Fig. 2. GPU memory model

 25

The memory model shows the interaction of the threads. All threads within one

copy can access local shared memory but cannot see what the other copies are doing

(even if they are on the same multiprocessor). There are no guarantees on the order

in which the copies will execute. Therefore, for the correct execution of the kernel,

in some cases a synchronization of the threads in each block is needed. Instruction

__syncthreads(); inserts a “barrier” synchronization. No thread in a block is allowed

to proceed beyond this point until the rest threads have reached it. Global

synchronization of all threads can be performed across separate kernel launches or

with Fast Barrier Synchronization [24].

3. Boolean functions and Walsh spectrum

Boolean functions play a critical role in cryptography, especially in the design of

S-boxes which perform the substitutions in block ciphers. There are parameters of a

Boolean function that are very important in this usage. Some of these parameters are

connected with its Walsh spectrum [4].

A Boolean function f of n variables is a mapping from F2
n
 into F2, where

F2 = {0, 1} is the field with two elements. The Truth Table TT(f) is the 2n-dimensional

vector which has the function values of f as coordinates. We can consider the vectors

in F2
n
 as binary representations of the integers in the interval [0, …, 2n – 1]. This

consideration is very useful if we try to describe and explain some transformations of

Boolean functions and related algorithms. Here we present efficient algorithms for

calculating the Walsh spectrum. The basis is a matrix and vector multiplication. In

our case the considered matrices have not only recursive structure but this structure

is quite specific and enables a very effective (butterfly) multiplication.

Walsh (Walsh-Hadamard) transform fW of the Boolean function f is the integer

valued function fW : F2
n
  Z [4], defined by

W () () ()

2 2

() (1) (1) (1) ,f x a x a x f x

n nx F x F

f a 

 

     

where 1 1 2 2n na x a x a x a x    The values of fW are called Walsh coefficients.

We show below that fW can be calculated using the multiplication of an Hadamard

matrix Hn by the Polarity Truth Table of the Boolean function.

Let S = {0, 1, 2, …, 2n – 1}. To any integer u  S we correspond its binary

representation, written as an n-dimensional binary vector, namely u =(u1, u2, …, un).

This means that u = u12
n–1 + u22

n–2 + … + un–121 + un, uiF2. Let

Sset ={0, 1, 2,..., 2 1},n  and let ()
mat
nS be the 2nn matrix

() T
mat {0, 1, 2,..., 2 1} .n nS  

The matrices ()
mat
nS can be defined recursively in the following way:

()

(1) mat

mat ()

mat

0
.

1

n

n

n

S
S

S


 

  
 

Consider the matrix  
T

() ()

mat mat. .n n

nH S S  Obviously,

 26

1 2

0 0 0 0

0 0 0 1 0 1
, .

0 1 0 0 1 1

0 1 1 0

H H 

 
 

        
 
 

According to the matrix multiplication rule we have

0 0 0 1 0 2 1

1 0 1 1 1 2 1
.

2 1 0 2 1 1 2 1 2 1

n

n

n

n n n n

H 

 
 
 

  
 
 

    

It is easy to see that Hn
+ is a symmetric matrix. Its rows (and columns) are all

vectors from an n dimensional vector subspace of
2

2

n

F . In coding theory this subspace

(without the zero coordinate) is known as a simplex code. This space together with

its coset with representative (11 … 1) forms the first order Reed-Muller code [4].

Using the recurrence relation, we obtain

 
   

()
T

(1) (1) mat
T T1 mat mat () () ()

mat mat mat

00...0 11...10
. ,

1

n
n nn n

n n n n

n n

H HS
H S S

S S S H H

 

  


 

    
             

where H is the negation of the binary matrix H.

The polarity representation of a binary vector (matrix) is the vector (matrix)

obtained after replacing 0 by (–1)0 = 1 and 1 by (–1)1. Denote by Hn the polarity

representation of Hn
+. Since the negation for a binary matrix correspond to the

multiplication by (–1) of its polarity representation, we have

1 1

0 1 1 1

1 1

1 1
(1), , for 2.

1 1

n n

n n

n n

H H
H H H H H n

H H

 



 

  
       

   

The matrices Hn are Hadamard matrices of Sylvester type called also Sylvester

matrices or Walsh matrices.

Let f : F2
n  F2 be a Boolean function of n variables and TT(f) be its Truth Table,

TT() ((0), (1),..., (2 1)).nf f f f  The polarity representation of TT(f) is called the

Polarity Truth Table and denoted by PTT(f). The foregoing implies that the Walsh

spectrum of the Boolean function f is Wf = HnPTT(f) and its coordinates are the Walsh

coefficients of f (in this equality PTT(f) and Wf are columns but we consider Wf also

as a row depending on the particular case).

To calculate the Walsh spectrum of a Boolean function, one can use also the

Fast Walsh transform which can be given by a butterfly diagram and the

corresponding algorithm with complexity O(n2n) (Fig. 3 [10]). The theoretical base

of the Fast Walsh transform is given by G o o d [9] and it follows from the

factorization

Hn = (H1I2k–1)(I2H1I2k–2)…(I2k–1H1).

 27

A vector t of length 2n is transformed in n steps. In the beginning t = t(0) = PTT(f).

For the first step we partition t(0) into 2n–1 pairs (t0, t1), (t2, t3), etc. The new vector is

t(1) = (t0 + t1, t0 – t1, t2 + t3, t2 – t3, …, t2n–2 + t2n–1, t2n–2 – t2n–1).

In the s-th step (1 ≤ s ≤ n) the vector (the table) is partitioned into intervals of

length 2s (called size in the step), and apply suitable calculations as follows:

(1)
() (1) (1) () (1) (1),s s s s s s

i i i j i j i i jt t t t t t   

     

for all i, 0 ≤ i < 2n, such that i ≡ 0, 1, …, 2s–1 – 1 (mod 2s), j = 2s–1.

Fig. 3. Fast Walsh Transform

In [3], we have presented an algorithm (Algorithm 0) which uses the binary

representations of the integers from the set S. This algorithm passes all elements of

the matrix ()

mat

nS in n steps column by column starting from the last one. The array Wf

is equal to t(s) after the s-th step. In the beginning, Wf = t(0) = PTT(f). The integer j is

equal to 2s–1 in the s-th step. The only coordinate equal to 1 in the vector j
–
 is in the

position n – s + 1. Depending on the value in the i-th row and (n – s + 1)-th column

of the matrix ()

mat

nS the algorithm calculates the next values for Wf[i] and Wf[i + j].

After the n-th step, Wf is equal to the Walsh spectrum of the Boolean function.

Fast Walsh transform can be implemented in parallel, by using the base concept

of Algorithm 0. For the parallel adaptation, we use CUDA C and make several

algorithms using various optimization techniques, models and different memory

types to get better performance and efficiency.

Algorithm 0. Fast Walsh Transform

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries

j  1; Wf  PTT;

while (j < 2n) do

for i = 0 to 2n – 1 do

if ((i&j) = 0) then

temp  Wf[i];

Wf[i]  Wf[i] + Wf[i+j];

Wf[i + j]  temp – Wf[i + j];

end then

end for

j 2*j;

end while.

 28

4. Parallel implementation of Fast Walsh transform

In this section we present several parallel algorithms realizing the Fast Walsh

Transform (FWT). Each of them has improvements compared with the previous one.

These algorithms are implemented in CUDA C.

We use the following notations, constants and variables in the pseudo codes

which describe the algorithms:

 a&b, the bitwise AND operation of nonnegative integers a and b;

 tID is the index of the current thread in the grid;

 bID is the index of the current block;

 tID_inblock is the index of the thread in the current block;

 block_size shows the number of threads per block;

 block_num is the number of blocks in the grid;

 grid_size is the number of all threads in the grid,

grid_size = block_numblock_size.

Algorithm 1 is based on the sequential Algorithm 0 but with a suitable

modification in order to implement it in parallel. All other algorithms are

modifications of this algorithm.

Algorithm 1. Parallel Implementation of FWT

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries

Allocate memory for device copies and host copy

Copy the input data from the host to the device

Set a grid of blocks and threads

size  2n;

if (size <= 1024) then

block_size  size;

block_num  1;

end then

else /* if size > 1024 */

block_num  size=1024;

block_size  1024;

end else

j  1; r  0; Wf  PTT; temp  0;

while (j < size) do

r  r + 1; /* r is the number of the current step */

fwt_kernel(Wf , temp, r, j) /*Launch kernel*/

j  2*j; /* j is the size of the current step */

end while

if r is odd then Wf  temp;

Copy the result back to host

Cleanup memory

 29

fwt_kernel(Wf, temp, r, j) Kernel, Algorithm 1

Input: The arrays Wf and temp with 2n entries, and the integers r and j

Output: The arrays Wf and temp

Init tID;

i  tID; /* index of the thread */

if r is odd then /* This determines where to save the intermediate result */

if ((i&j) = 0) then

value  (Wf[i] + Wf[i + j]);

end then

else

value  (–Wf[i] + Wf[i – j]);

end else

temp[i]  value;

end then

else

if ((i&j) = 0) then

value  (temp[i] + temp[i + j]);

end then

else

value  (–temp[i] + temp[i – j]);

end else

Wf[i]  value;

end else

The kernel (fwt_kernel) in Algorithm 1 uses two arrays, namely Wf and temp,

and two integer variables r and j, where r is the number of the current step, and j is

the size of the current step in the butterfly algorithm. In any step the kernel takes data

from one of the arrays, depending on the step, calculates values for the current step

of the butter y algorithm, and writes the result in the other array. It is impossible to

use only one array in this simple implementation, because there is no global

synchronization in the kernel between the threads in different blocks. In fact, the

synchronization is achieved by launching the kernel n times from the main

(sequential) program.

We have to mention that Algorithm 1 has not very good performance because

the kernel uses global arrays at any step. Practically, the time for launching the kernel

(creating and destroying threads) is negligible.

In some cases, warp divergence can lead to a big loss of parallel efficiency,

and this is one of the things we should pay attention to. Therefore we propose

Algorithm 2 which is a modification of Algorithm 1. The difference is only in the

kernel where the statement if else is replaced by an algebraic expression to avoid

warp divergence. The expression is

value  (1 – ii)*(Wf[i] + Wf[i + j]) + ii*(–Wf[i] + Wf[i – j]).

The variable ii takes two values, ii = 0 if i&j = 0, and ii = 1 otherwise.

 30

fwt_kernel_no_if(Wf, temp, r, j) Kernel, Algorithm 2

Input: The arrays Wf and temp with 2n entries, and the integers r and j

Output: The arrays Wf and temp

Init tID;

i  tID; /* index of the thread */

ii  (i&j)/j; /* Conditional variable */

if r is odd then

value  (1 – ii)*(Wf[i] + Wf[i + j]) + ii*(–Wf[i] + Wf[i – j]);

temp[i]  value;

end then

else

value  (1 – ii)*(temp[i] + temp[i + j]) + ii*(–temp[i] + temp[i – j]);

Wf[i]  value;

end else

Algorithm 3 is a modification of Algorithm 1. In this algorithm, any thread

executes more computations. The pseudo code of the parallel implementation is

shown in Algorithm 3.

Algorithm 3 takes the same input as Algorithm 1, with an additional parameter

M. In the previous algorithms, any thread calculates only one value for the current

step in the butterfly algorithm. In Algorithm 3, any thread calculates M values. We

would like to see how this affects the performance. This is the reason to present this

new algorithm. Actually, we only add for loop in the kernel:

for i = tID*M to (tID + 1)*M – 1 do.

In addition, the grid configuration depends on M. For computing the same Walsh

spectrum, larger M means less number of threads and more work per thread. An

example of the grid configuration is shown in pseudo code above.

Algorithm 3. Parallel Implementation of FWT

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries,

and an integer M = 2s, s < n

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries

Allocate memory for device copies and host copy

Copy the input data from the host to the device

Set a grid of blocks and threads, the grid con guration depends on M

size  2n;

if (size/M <= 1024) then

block_size  size/M;

block_num  1;

end then

else /* if size/M > 1024 */

block_num  (size/M)/1024;

block_size  1024;

end else

j  1; r  0; Wf  PTT;

 31

while (j < 2n) do

r  r + 1;

fwt_kernel_M(Wf, temp, r, j, M) /*Launch kernel*/

j  2*j;

end while

if r is odd then Wf  temp;

Copy the result back to host

Cleanup memory

fwt_kernel_M(Wf, temp, r, j, M) Kernel, Algorithm 3

Input: The arrays Wf and temp with 2n entries, and the integers r, j, M

Output: The arrays Wf and temp

Init tID;

for i from tID*M to (tID + 1)*M – 1 do

if r is odd then

if ((i&j) = 0) then

value  (Wf[i] + Wf[i + j]);

end then

else

value  (–Wf[i] + Wf[i – j]);

end else

temp[i]  value;

end then

else

if ((i&j) = 0) then

value  (temp[i] + temp[i + j]);

end then

else

value  (–temp[i] + temp[i – j]);

end else

Wf[i]  value;

end else

end for

Algorithm 4 uses shared memory combined with the kernel from Algorithm 1.

At first stage, we use shared memory for calculations until a certain step (depending

on the shared memory limitation). After that we use global memory for computations.

The pseudo code is shown in Algorithm 4.

Algorithm 4 has two kernels. The first one uses shared memory for calculations

until a certain step. It can launch maximum 1024 threads per block. (because of the

limitation of GPU) and the data is shared between all threads from the same block. If

n > 10 the dimension of the vector considered is larger than 1024. Therefore the array

of size 2n can be partitioned into parts of length 1024. Each of these parts is copied

into a special type of memory, and this is the shared memory of the corresponding

block. The writing and reading in the shared memory is considerably faster.

 32

Moreover, the writing and reading in this memory can be synchronized in CUDA

terms. This allows the kernel to do all calculations for a fixed number of steps in the

Fast Walsh Transform (which is 10 steps for 1024 threads). In the eleventh step, the

FWT uses data from different parts of the array and therefore we go out of the size of

the shared memory and we have to use the global memory again. For that we use the

second kernel.

Algorithm 4. Parallel implementation of FWT

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries

Allocate memory for device copies and host copy

Copy the input data from the host to the device

Set a grid of blocks and threads

size  2n;

if (size <= 1024) then

block_size  size;

block_num  1;

end then

else /* if size > 1024 */

block_num  size/1024;

block_size  1024;

end else

Wf  PTT;

fwt_kernel_SM(Wf, block_size) /*Launch Shared memory, Kernel*/

j  1024; r  10;

while (j < 2n) do

r  r + 1;

fwt_kernel(Wf, temp, r, j) /*Kernel, Algorithm 1*/

j  2 * j;

end while

if r is odd then Wf  temp;

Copy the result back to host

Cleanup memory

fwt_kernel_SM(Wf, block_size) Kernel, Algorithm 4

Input: The array Wf with 2n entries, and block size

Output: The array Wf

Declare shared memory as the array tmpsdata of length block_size

Init tID, tID_inblock;

i  tID_inblock;

value  Wf[tID]; /*Local variable for every thread, taken from Wf */

j  1;

while j < block_size do

tmpsdata[i]  value;

__syncthreads();

 33

if ((i&j) = 0) then

value  (value + tmpsdata[i + j]);

end then

else

value  (–value + tmpsdata[i – j]);

end else

__syncthreads();

j  2*j;

end while

Wf[tID]  value;

After starting the kernel, a shared memory is declared, and data is written from

Wf to the shared memory. Each thread takes two elements from the shared memory,

add or subtract them, and stores the result in a local variable. At the end of the step

threads have to be synchronized.

After passing the first kernel, the algorithm launches the second kernel if needed

(if n > 10). The second kernel is fwt_kernel from Algorithm 1.

Algorithm 5. Parallel Implementation of FWT

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries

Allocate memory for device copies and host copy

Copy the input data from the host to the device

Set a grid of blocks and threads

size  2n;

if (size <= 1024) then

block_size  size;

block_num  1;

end then

else /* if size > 1024 */

block_num  size/1024;

block_size  1024;

end else

Wf  PTT;

fwt_kernel_SM(Wf, block_size) /*Kernel, Algorithm 4*/

if (size > 1024) then /* Shared memory + Memory pattern */

fwt_kernel_SM_MP(Wf, block_num)

end then

Copy the result back to host

Cleanup memory

Algorithm 5, we use shared memory combined with a memory pattern. The

memory pattern is used for tracking the intermediate results from the steps of the

calculation (this limitation comes from the shared memory). Here we obtain better

performance compared with the other algorithms. This algorithm is designed for

 34

maximum 220 entries or the maximum length of the used vector can be 220. We show

the pseudo code in Algorithm 5.

Algorithm 5 has two kernels. The first kernel is fwt_kernel_SM – the first kernel

of Algorithm 4. The difference between Algorithm 4 and Algorithm 5 comes after

finishing this kernel. The second kernel is similar to the first kernel but with the

adding a memory pattern. After the first kernel we have to sum the elements Wf [0]

and Wf[1024], Wf[1] and Wf[1025], etc., but they are in different blocks, so in different

shared memories. The memory pattern rearranges the shared memory in such a way

that the memory elements from different blocks are set in order to perform FWT from

the beginning.

The arrangement is given by the following expression:

ji = (tID_inblock)*block_num + bID.

The easiest way to explain it is by using a two dimensional array (a matrix).

Suppose that we have put the elements of the grid into a block_num  1024 matrix G

such that the elements from the i-th block are set in the i-th row. Then the number of

the rows coincides with the number of the blocks, and the number of the columns is

the number of the threads in corresponding blocks. So the element in the i-th row and

j-th column correspond to the j-th thread (j=tID_inblock) in i-th block (i=bID) which

means that the thread with index tID reads Wf[tID]. It is not difficult to calculate the

global index of this thread in the grid tID = 1024*i + j = 1024*bID + tID_inblock.

To rearrange the memory, we transpose the matrix G. Then the thread with index tID

reads the value from Wf[ji], ji = block_num*j + i = (tID_inblock)*block_num + bID,

and writes it in the cell with number tID_inblock of the shared memory. After the last

step the kernel writes the obtained result in Wf[ji].

In Fig. 4 we show memory movement for Boolean function f of 11 variables,

which means that the vector Wf has 2048 entries.

Fig. 4. Memory pattern for a Boolean function f, with 2048 entries

In Algorithm 6, we use warp shuffles. Warp shuffle is a machine instruction for

NVIDIA GPUs with compute capability 3.0 and higher. Threads are executed in

warps and any warp contains 32 threads. All threads in the warp execute the same

instruction at the same time. Warp shuffles give a mechanism for moving data (values

of local register variables) between threads in the same warp, without using any

shared memory. There are 4 variants of warp shuffles, but for our need we use

__shfl_xor(a, i) where a is a local register variable, and i is an integer, 0 < i < 16 [8].

Then all threads in the warp are partitioned into 16 pairs, namely the threads with

indexes (0, i), (1, i + 1), …, (31 – i, 31).

 35

The value of the variable a in a thread becomes available for the other thread in

the pair (Fig. 5).

Fig. 5. Warp shuffles, __shfl_xor

Algorithm 6 has two kernels. The first kernel combines __shfl_xor and shared

memory for calculations until certain steps. From the limitation of the shared

memory, the combination of __shfl_xor and shared memory can calculate up to 10

step of FWT (minimum 5 steps). The first kernel is similar to the first kernel from

Algorithm 4, with additional __shfl_xor part segment as it is shown below:

j  1

while j < 32 do

ii  (i&j)/j;

value ii*(__shfl_xor(value, j) – value)+(1–ii)*(__shfl_xor(value, j)+value);

j  2*j

end while

In this segment, we make FWT on a level of warp. The wrap shuffle __shfl_xor

does all the work here and the expression here is similar to expression from

Algorithm 2.

The second kernel here is similar to the first kernel with additional memory

pattern. We have already mentioned that the memory pattern is used to rearrange the

memory in such a way that memory elements from different blocks are set in order

to perform FWT from the first step. After a certain number of steps we do a

rearrangement again. The additional parameter for_shfl is a check condition for the

construction __shfl_xor in case if there are less than five steps of computations with

the second kernel.

Algorithm 6. Parallel implementation of FWT

Input: The Polarity Truth Table PTT of the Boolean function f, with 2n entries

Output: The Walsh spectrum Wf of the Boolean function f, with 2n entries

Allocate memory for device copies and host copy

Copy the input data from the host to the device

Set a grid of blocks and threads

size  2n;

if (size <= 1024) then

block_size  size;

block_num  1;

 36

end then

else /* if size > 1024 */

block_num  size/1024;

block_size  1024;

for_shfl  block_num;

if (block_num > 32) then

for_shfl  32;

end then

end else

Wf  PTT;

fwt_kernel_shfl_xor_SM(Wf, block_size) /* Warp shuffles-Shared memory*/

if (size > 1024) then

fwt_kernel_shfl_xor_SM_MP(Wf, block_num, for_shfl)

/* Warp shuffles-Shared memory-Memory pattern */

end then

Copy the result back to host

Cleanup memory

fwt_kernel_shfl_xor_SM(Wf , block_size) Kernel, Algorithm 6

Input: The array Wf with 2n entries, and block_size

Output: The array Wf

Declare shared memory as the array tmpsdata of length block size

Init tID, tID_inblock;

i  tID_inblock;

value  Wf [tID]; /*Local variable for every thread, taken from Wf */

j  1;

while j < 32 do

ii  (i&j)/j;

valueii*(__shfl_xor(value, j)–value)+(1–ii)*(__shfl_xor(value, j)+value);

j  2*j;

end while

while j < block_size do

tmpsdata[i]  value;

__syncthreads();

if ((i&j) = 0) then

value  (value + tmpsdata[i + j]);

end then

else

value  (–value + tmpsdata[i – j]);

end else

__syncthreads();

j  2*j;

end while

Wf [tID]  value;

 37

fwt_kernel_sh_xor_SM_MP(Wf, block_num, for_shfl) Kernel, Algorithm 6

Input: The array Wf with 2n entries, and block_ size

Output: The array Wf

Declare shared memory as the array tmpsdata of length block_size

Init tID, tID_inblock;

i  tID_inblock;

ji = (tID_inblock)*block_num + bID;

value  Wf [ji]; /*Local variable for every thread, taken from Wf */

j  1;

while j < for_shfl do

ii  (i&j)/j;

value  ii*(__shfl_xor(value, j) – value)+(1 – ii)*(__shfl_xor(value, j)+

value);

j  2*j;

end while

while j < block_num do

tmpsdata[i]  value;

__syncthreads();

if ((i&j) = 0) then

value  (value + tmpsdata[i + j]);

end then

else

value  (–value + tmpsdata[i – j]);

end else

__syncthreads();

j  2*j;

end while

Wf [ji]  value;

Table 1. Description of the test platforms

Environment Platform 1 Platform 2

CPU Intel i3-3110M Intel Xeon E5-2640

Memory 4 GB DDR3 1333 MHz 48GB DDR3 1333 MHz

OS Win764 SP1 Win764 SP1

Compiler MSVC 2010 MSVC 2012

GPU GeForce GT 740M GeForce GTX TITAN

Driver v347.62, SDK 7.0 v347.62, SDK 7.0

Experimental evaluations and the time efficiency of all algorithms are shown in

the next section.

 38

5. Experimental evaluation

In this section we present our experimental results. The test platforms that were used

in our experiments are described in Table 1. Platform 1, a graphic card NVIDIA

GeForce GT 740M [18], has 384 cores running at 0.9 GHz and 28.8 GB/s memory

bandwidth. Platform 2, a graphic card NVIDIA GeForce GTX TITAN [19], has 2688

cores running at 837 MHz and 288.4 GB/s memory bandwidth. All algorithms are

implemented in parallel computing platform and programming model CUDA [6]. We

have used CUDA Toolkit 7.0 and development environment MS Visual Studio 2010

for Platform 1 and the same version CUDA Toolkit 7.0 but MS Visual Studio 2012

as a development environment for Platform 2. Program are executed in Active

solution configuration-Release, and Active solution platform-Win32. We denote

Platform 1 by P1 and Platform 2 by P2.

We run the programs with input array with 2n entries for n = 7, …, 18. All data

resides in GPU device memory at the beginning of each test so there is no data

transfer to CPU. This prevents interaction with other significant factors in this study.

For the purposes of comparison, we implement Algorithm 0 sequentially in

programming language C++ using development environment MS Visual Studio 2010.

All CPU examples are executed on Platform 1 (Intel i3-3110M) in Active solution

configuration – Release, and Active solution platform Win32.

Fig. 6 shows the execution time for calculating the Walsh spectrum for different

number of threads per block (Algorithm 1, Platform 1). The blue and the red lines

show the execution time for calculating the Walsh spectrum of a Boolean function of

16 variables, but the red line presents the program which does not use synchronization

(in some cases the program without synchronization does not give a right answer but

the synchronization slows down the execution time). The green line shows the

execution time for calculating the Walsh spectrum of a Boolean function of 15

variables (in this case the spectrum is a vector with 215 coordinates). Looking at the

graphic, we can conclude that we have the fastest execution time if we use 128 threads

per block. But the increase in the execution time for 1024 threads per block is

relatively small.

Fig. 6. Relation between time and number of threads per block (Platform 1)

 39

The results for different values of the parameter M versus execution time

(Algorithm 3, Platform 1) for a Boolean function with 16 variables is shown on

Fig. 7. We see, that if there are less threads but any thread calculates more.

Walsh coefficients, the execution time increases. In Fig. 7, M = 32/2048 means

that the grid has 2048 threads, and any thread calculates M = 32 coefficients.

Fig. 7. Work (M) per thread vs. execution time (Platform 1)

The comparison between the CPU Algorithm 0, and the parallel algorithms

(Platform 1) is shown in Fig. 8. We denote Algorithm 1 by A1, Algorithms 4, 5 and

6 by A4, A5 and A6, respectively. The blue line represents the CPU Algorithm 0’s

implementation in C++, and the other lines shows the performance of Algorithms

1, 4, 5, 6. Obviously, there is a point in which the GPU implementation becomes

faster (detailed results for the execution time are shown in Table 2).

Fig. 8. CPU vs. different GPU implementations (Platform 1)

A comparison between the first, fourth, fifth and sixth parallel algorithms is

shown in Fig. 9 (Platform 1). The parallel implementation algorithms are colored. As

we have expected, every further algorithm has better execution time than the previous

one for larger n.

 40

Fig. 9. Time for calculating Wf - GPU implementations (Platform 1)

One of our main goals is to achieve acceleration of the speedup between the

sequential and parallel implementation where the speedup is given by the formula

0
p

p

()
.

()

T n
S

T n


Here n is the size of the input data (in our case the number of variables of the Boolean

function), T0(n) is the execution time of the fastest known sequential algorithm, and

Tp(n) is the execution time of the parallel algorithm.

Table 2 shows the execution times (in ms) of the implementations of CPU and

GPU algorithms for different sizes of the input data, as well as the speedups for the

different GPU implementations. The speedup of the parallel algorithm with number

i is denoted by Si, i = 1, …, 6. We see in the table that CPU is faster for small n. For

larger n, more threads are used and therefore the computation is faster than in the case

of sequential programming. The fourth, fifth and sixth algorithms shows that the size

has to be at least 256 in order to have faster GPU than CPU implementation.

However, there are limitations for the size of input data which depend on the problem,

the algorithm, GPUs, the libraries, the model, etc.

Table 2. CPU vs. GPU implementations, Platform 1

Size CPU (ms) A1 (ms) S1 A4 (ms) S4 A5 (ms) S5 A6 (ms) S6

27 0.003 0.024 < 1 0.0066 < 1 0.0066 < 1 0.0056 < 1

28 0.007 0.026 < 1 0.0066 1.060 0.0066 1.060 0.0057 1.222

29 0.015 0.028 < 1 0.0069 2.272 0.0069 2.272 0.0058 2.547

210 0.033 0.034 < 1 0.0071 4.647 0.0071 4.647 0.0059 5.584

211 0.068 0.039 2 0.013 5.230 0.0124 5.483 0.0116 5.862

212 0.145 0.048 3.02 0.019 7.631 0.0147 9.863 0.0119 12.156

213 0.308 0.062 4.967 0.026 11.84 0.023 13.39 0.0174 17.647

214 0.665 0.096 6.927 0.048 13.85 0.052 12.78 0.0366 18.085

215 1.148 0.165 6.961 0.1 11.48 0.13 8.836 0.0965 11.901

216 3.116 0.366 8.513 0.24 12.98 0.28 11.12 0.2042 15.259

217 6.87 1.561 4.401 0.85 8.082 0.595 11.54 0.5379 12.771

218 14.81 3.571 4.149 2.058 7.207 1.207 12.27 1.1187 13.245

 41

Another interesting observation (Table 2) for the fourth and fifth algorithms is

about the intersection on time execution. In one point memory pattern has higher

price (spend more time on memory movement) than shared memory computation.

Also for sixth algorithm we can observe the time execution for 1024 to 2048 how

climbing doubles. This duplication is due to the memory pattern or time spent to

rearrange the memory.

Experimental results for Platform 2 are shown in Fig. 10. We included only tests

for n = 14, …, 18, in the graphic because there is no significant improvement for

smaller n compared with Platform 1.

Fig. 10. Time for calculating [Wf] GPU implementation (Platform 2)

Fig. 11 shows a comparison between Platform 1 and Platform 2 for the best

Algorithm (Algorithm 6). As we can see in Fig. 11 the difference between execution

times of both platforms increases with the size of data. In Table 3 we give some

details for the comparison between Platform 1 and Platform 2 for Algorithm 6. This

gap is due to the fact that Platform 2 GPU has better hardware performance.

Fig. 11. Running time (Algorithm 6): Platform 1 vs. Platform 2

 42

Table 3. Algorithm 6: Platform 1 vs. Platform 2 and CPU vs. Platform 2(A6)

Size A6,P1(ms) A6,P2(ms) SpA6:P1vsP2 CPU(ms) Sp:CPUvs(A6)P2

214 0.036 0.021 1.71 0.665 31.66

215 0.096 0.027 3.55 1.148 42.51

216 0.204 0.048 4.25 3.116 64.91

217 0.537 0.084 6.40 6.87 81.78

218 1.118 0.142 7.87 14.81 104.30

6. Conclusion

In this paper, we present parallel algorithms for computing the Walsh spectrum of a

Boolean function with widely used NVIDIA GPUs. We show how the basic

algorithm can be improved in order to obtain better performance. Here we compare

algorithms with and without synchronization, memory pattern, wrap shuffles, etc. By

choosing proper optimization techniques and appropriate methods, the efficiency and

performance can be increased.

To measure the execution time, we execute the program million times and take

the average execution time. However, a deviation of 5% may occur in next

measuring of the execution time for the same size.

Acknowledgements: This research is supported by Bulgarian Science Fund under Contract

DN-02-2/13.12.2016.

R e f e r e n c e s

1. A l v a r e z-C u b e r o, J., P. Z u f i r i a. A C++ Class for Analysing Vector Boolean Functions from

a Cryptographic Perspective. – In: Proc. of International Conference on Security and

Cryptography (SECRYPT’10), 2010, pp. 512-520.

2. A n d r a d e, J., G. F a l c a o, V. S i l v a. Optimized Fast Walsh-Hadamard Transform on GPUs for

Non-Binary LDPC Decoding. – Parallel Computing, Vol. 40, 2014, No 9, pp. 449-453.

3. B o u y u k l i e v, I., D. B i k o v. Applications of the Binary Representation of Integers in

Algorithms for Boolean Functions. – In: Proc. of 44th Spring Conference of the Union of

Bulgarian Mathematicians, Mathematics and Education in Mathematics, 2015, pp. 161-166.

4. C a r l e t, C. Boolean Functions for Cryptography and Error Correcting Codes. – In: C. Crama and

P. Hammer, Eds. Boolean Models and Methods in Mathematics, Computer Science, and

Engineering. Cambridge University Press, 2010, pp. 257-397.

5. C o p e l a n d, A. D., N. B. C h a n g, S. L u n g. GPU Accelerated Decoding of High Performance

Error Correcting Codes. – In: Proc. of 14th Annual Workshop on HPEC, Lexington,

Massachusetts, USA, 2010.

6. CUDA C Programming Guide.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
7. CUDA Homepage.

http://www.nvidia.com/object/cuda home new.html

8. D e m o u t h, J. Kepler’s Shuffle: Tips and Tricks. – GPU Technology Conference, 2013.

http://on-demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-

Tricks.pdf
9. G o o d, I. J. The Interaction Algorithm and Practical Fourier Analysis. – Journal of the Royal

Statistical Society, Vol. 20, 1958, No 2, pp. 361-372.

 43

10. J o u x, A. Algorithmic Cryptanalysis. Chapman & Hall/CRC Cryptography and Network Security

Series, 2009.

11. K a r p o v s k y, M. G., R. S. S t a n k o v i c, J. T. A s t o l a. Spectral Logic and Its Applications for

the Design of Digital Devices. Wiley, 2008.

12. K i r k, D. B., W e n-m e i W. H w u. Programming Massively Parallel Processors: A Hands-on

Approach. Elsevier, 2013.

13. K u r z a k, J., D. A. B a d e r, J. D o n g a r r a. Scientific Computing with Multicore and

Accelerators. CRC Press, 2010.

14. L i n d h o l m, E., J. N i c k o l l s, S. O b e r m a n, J. M o n t r y m. NVIDIA Tesla: A Unied

Graphics and Computing Architecture. – IEEE Micro, Vol. 28, 2008, Issue 2.

15. L o b e i r a s, J., M. A m o r, R. D o a l l o. BPLG: A Tuned Buttery Processing Library for GPU

Architectures. – International Journal of Parallel Programming, Vol. 43, 2015, No 6,

pp. 1078-1102.

16. M a c i o l, P., K. B a n a s. Testing Tesla Architecture for Scientific Computing: The Performance

of Matrix-Vector Product. – In: Computer Science and Information Technology, IMCSIT

2008, pp. 285-291.

17. MATLAB Platform for Solving Engineering and Scientific Problems.

https://www.mathworks.com/products/matlab/
18. NVIDIA GeForce GT 740M Specification.

http://www.geforce.com/hardware/notebook-gpus/geforce-gt-740m
19. NVIDIA GeForce GTX TITAN Specification.

http://http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan /specifications
20. NVIDIA: CUDA cuFFT Library.

http://docs.nvidia.com/cuda/cufft/
21. O w e n s, J. D., M. H o u s t o n, D. L u e b k e, S. G r e e n, J. E. S t o n e, J. C. P h i l l i p s. GPU

Computing. – Proc. of IEEE, Vol. 96, 2008, No 5, pp. 879-899.

22. P i c e k, S., L. B a t i n a, D. J a k o b o v i c, B. E g e, M. G o l u b. S-Box, SET, Match: A Toolbox

for S-Box Analysis. – In: Information Security Theory and Practice. Securing the Internet of

Things, Lecture Notes in Computer Science, Vol. 8501, 2014, pp. 140-149.

23. Sage Mathematics Software.

http://www.sagemath.org/
24. S h u c a i, X i a o, W u-c h u n F e n g. Inter-Block GPU Communication via Fast Barrier

Synchronization. – In: IEEE International Symposium on Parallel & Distributed Processing

(IPDPS’10), 2010.

Received 28.09.2017; Accepted 30.11.2017

