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Abstract: Feature extraction is an interactive and iterative analysis process of a large 

dataset of raw data in order to extract meaningful knowledge. In this article, we 

present a strong descriptor based on the Discrete Cosine Transform (DCT), we show 

that the new DCT-based Neighboring Support Vector Classifier (DCT-NSVC) 

provides a better results compared to other algorithms for supervised classification. 

Experiments on our real dataset named BOSS, show that the accuracy of 

classification has reached 99%. The application of DCT-NSVC on MIT-CBCL 

dataset confirms the performance of the proposed approach. 

Keywords: Supervised learning, DCT, NSVC, shape recognition, SVM, feature 

extraction. 

1. Introduction 

Today, the increasing of databases’ size poses an unprecedented challenge for data 

mining. The researchers realized that the selection of variables consists in choosing 

from a set of large variables a subset of most interesting variables to perform 

supervised classification. The objective of supervised classification is to build, using 

a learning set, a classification model that allows to predict the belonging of a new 

example to a class. In other words, the objective is to identify the classes to which 

objects belong on the basis of their descriptive variables. 

In recent years, some researchers have explored the possibility of extracting 

features in the frequency domain using the Discrete Cosine Transform (DCT). The 

results showed that this technique is promising and allows to have discriminant 

features in the frequency domain. 

In this paper, we have applied the new DCT-based Neighbouring Support 

Vector Classifier (DCT-NSVC) [4] method to build decision rules in order to 

construct a classification system. This algorithm uses a set of vicinal kernel functions 
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constructed based on supervised clustering in the kernel-induced function space. 

Comparison with supervised classification methods shows that the system has been 

able to provide better classification. 

This paper is organized as follow: we begin in Section 2 with a brief review of 

DCT methods. Section 3 presents a mathematical study of our proposed method 

NSVC. The results of our experiments on reference datasets are presented in  

Section 4. Section 5 concludes the paper and gives a brief vision for future work. 

2. Discrete cosine transform 

In this section, we propose a description of feature extraction approach based on the 

DCT method [1, 5]. In the beginning, the DCT transform is applied to convert the 

image into the frequency domain and a first dimensionality reduction is performed 

by the rejection of the high-frequency components. 

The DCT is widely used in signal and image processing, especially in 

compression, it has indeed an excellent property of “regrouping” of the energy: The 

information is mainly carried by the low frequency coefficients. 

The application of the DCT causes the information of the image of the spatial 

domain to pass into an identical representation in the frequency domain. Why is this 

change of domain so interesting? Precisely because a conventional image admits a 

great continuity between the values of the pixels. Since high frequencies are reserved 

for rapid changes in the intensity of the pixel, they are generally minimal in an image. 

Thus, it is possible to represent all of the information of the image on very few 

coefficients, corresponding to rather low frequencies, the continuous component 

(average value of the image processed) having a great importance for the eye. 

The DCT transformed matrix being orthogonal, it is accompanied by a method 

of inversion to be able to return in the spatial domain. Thus, after making 

modifications in the frequency domain, eliminating variations of the image that are 

almost invisible by the human eye, we return to a representation in the form of pixels.  

This core performs the mathematics for the DCT of an MM image I(x, y) 

algorithm as defined by the equation below:  

𝑐(𝑢, 𝑣) =
2

𝑀
. 𝛼(𝑢)𝛼(𝑣) ∑

𝑀−1

𝑥=0

∑ 𝐼(𝑥, 𝑦)

𝑀−1

𝑦=0

. cos [
(2𝑥 + 1)𝑢𝜋

2𝑀
] cos [

(2𝑥 + 1)𝑣𝜋

2𝑀
] 

for   𝑢, 𝑣 = 0,1, … , 𝑀 − 1, 

𝑓(𝑥) =  {√0.5  for 𝑢 = 0,
1 otherwise.

 

The local information of the image can be obtained using the blocks of the DCT. 

The principle is the following: the image is divided into blocks of pixel size. Each 

block is represented by the coefficients of the DCT. From these, only those at the top 

left of the block are the most relevant and useful. The information needed to achieve 

high classification accuracy is contained in the first DCT (low frequency) coefficients 

by zigzag scanning. 
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3. Neighboring support vector classifier (NSVC) 

The use of the Support Vector Machine (SVM) was limited as the hypothesis that the 

training data are identically generated from unknown probability distributions which 

is not the case of real life applications and problems. 

To overcome this problem, the proposed method, Neighbouring Support Vector 

Classification (NSVC) [6, 7], uses a set of vicinal kernel functions built based on 

supervised clustering in the feature space induced by the kernel. This algorithm is 

faster, simpler to implement and requires a small memory space. 

The proposed approach includes two steps: 

 Supervised clustering step based on SKDA Algorithm (for Supervised 

Kernel-based Deterministic Annealing, used to partition the training data in different 

vicinal areas). 

 A training step where the SVM technique is used to minimize the Vicinal 

Risk function (VRM) under the constraints defined in clustering step based on 

SKDA. 

Consider the following input output data together: 

(1)   (𝑥𝑖, 𝑦𝑖  )𝑖=1
𝑙 ,    𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {−1, 1}, 

where l is the number of input data points, and n is the dimension of the input space. 

The vicinity functions 𝑣(𝑥𝑖) of the 𝑥𝑖 data points are built if test data points 

satisfy two assumptions: 

 The unknown density function is smooth in the neighbourhood of each 

point 𝑥𝑖.  

 The function minimizing the functional risk is also smooth and symmetric in 

the neighbourhood of each point 𝑥𝑖. 

The optimization problem based on the principle of VRM named vicinal linear 

SVM [8, 9], can then be formulated as 

(2)   minimize 𝛷(𝑤) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1 , 

subject to  𝑦𝑖 ∫ ([<  𝑥, 𝑤 >  +𝑏]𝑝(𝑥|𝑣(𝑥𝑖) ))𝑑𝑥 ≥  1 −  𝜉𝑖𝑣(𝑥𝑖)
, 

𝜉𝑖  ≥  0,   𝑖 =  1, . . . , 𝑙, 
where w is a weight, C is a punishment constant for 𝑥𝑖, b is the offset, 𝑣(𝑥𝑖)  is the 

vicinity associated with the test point 𝑥𝑖, and 𝑝(𝑥|𝑣(𝑥𝑖) ) is the conditional 

probability of the respective vicinity in the input space. 

The following theorem for the vicinal SVM solution is true (see [8] for a proof): 

(3)   𝑓(𝑥) =  ∑ 𝑦𝑖𝛽𝑖
𝑙
𝑖=1 𝐿(𝑥, 𝑥𝑖) + 𝑏,  

where to define the coefficients 𝛽𝑖 one has to maximize 

(4)   𝑊(𝛽) =  ∑ 𝛽𝑖
𝑙
𝑖=1 −

1

2
∑ 𝛽𝑖𝛽𝑗𝑦𝑖𝑦𝑗

𝑙
𝑖,𝑗=1 𝑀(𝑥𝑖, 𝑥𝑗) 

subject to ∑ 𝛽𝑖𝑦𝑖
𝑙
𝑖=1 ,  𝛽𝑖 ≥ 0, 

where 𝐿(𝑥, 𝑥𝑖) is called the mono-vicinal kernel and 𝑀(𝑥𝑖 , 𝑥𝑗)  is the bi-vicinal kernel 

of the vicinal SVM. 
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3.1. Supervised kernel-based deterministic annealing for NSVC 

The clustering of training data in the feature space is a well-documented subject  

[10, 11]. It consists of non-linearly mapping the observed data of an input low-

dimensional space to a high dimensional feature space using a kernel function, which 

facilitates the separation of linear data. 

Denoting a non-linear transformation of the input space X to a high-dimensional 

space using a kernel function as: 

𝛷 ∶  𝑅𝑛  →  𝐹, 
𝑥𝑖 → 𝛷(𝑥𝑖),      𝑗 =  1, . . . , 𝑙, 

where 𝛷(𝑥𝑖)  is the transformed point 𝑥𝑖. 

All training data points are distributed in c vicinities/clusters in the feature 

space, where 𝛷𝑘(𝑧) is the center of mass of the k-th vicinity residing in F. This is a 

similar representation to clustering based on the characteristic space of k-means: 

(5)   𝛷𝑘 = ∑ 𝛼𝑘𝑖𝑧𝑖
𝑙
𝑖=1 ,     𝑘 =  1, 2, . . . , 𝑐,  

where c is the number of clusters, 𝛼𝑘𝑖 are the parameters to be defined by the 

clustering technique (SKDA) and 𝑧𝑖 =  𝑦𝑖𝛷(𝑥𝑖) denotes the data points labeled in the 

feature space. 

The classification problem is usually defined mathematically by a cost function 

to be minimized, for NSVC case, this function is the distortion function. Similar to 

the notation used in [12], we let 𝑝(𝛷𝑘|𝑧𝑖) denote the probability of association of 

points 𝑧𝑖 mapped to the cluster center 𝛷𝑘. Using the square distance 𝐷𝑘(𝑧𝑖) between 

the center 𝛷𝑘 and the training vector 𝑧𝑖, the distortion function in the function space 

becomes 

(6)   𝐽𝛷 = ∑ ∑ 𝑝(𝑧𝑖)𝑝(𝛷𝑘|𝑧𝑖)
𝑐
𝑘=1 𝐷𝑘(𝑧𝑖)

𝑙
𝑖=1 . 

Since no a priori knowledge of the distribution of data is assumed, over all 

possible distributions which give a given value of 𝐽𝛷 we choose the one that 

maximizes the conditional Shannon entropy in the characteristic space: 

(7)   𝐻𝛷 = − ∑ ∑ 𝑝(𝑧𝑖)
𝑐
𝑘=1 𝑝(𝛷𝑘|𝑧𝑖)log𝑝(𝛷𝑘|𝑧𝑖)

𝑙
𝑖=1 . 

The optimization problem can be reformulated as the minimization of the 

Lagrangian: 

(8)   𝐹𝛷 =  𝐽𝛷 − 𝑇𝐻𝛷 , 
where T is the Lagrange multiplier. 

To determine the 𝛼𝑘𝑖 parameter, we minimize the free energy function F w.r.t 

the likelihood of association [12], which is related to the Gibbs distribution as 

(9)   𝑝(𝛷𝑘|𝑧𝑖) =  
𝑝(𝛷𝑘)𝑒

−𝐷𝑘(𝑧𝑖)

𝑇

∑ 𝑝(𝛷𝑚)𝑒
−𝐷𝑚(𝑧𝑖)

𝑇𝑐
𝑚=1

, 

where 𝑝(𝛷𝑘) is the mass probability for k-th cluster 

(10)   𝑝(𝛷𝑘) = ∑ 𝑝(𝑧𝑖)
𝑙
𝑖=1 𝑝(𝛷𝑘|𝑧𝑖). 

And so the energy function is 

(11) 𝐹𝛷
∗ = min𝑝(𝛷𝑘|𝑧𝑖)( 𝐽𝛷 − 𝑇𝐻𝛷) = −𝑇 ∑ 𝑝(𝑧𝑖)

𝑙
𝑖=1 log ∑ 𝑝(𝛷𝑘)𝑒

−𝐷𝑘(𝑧𝑖)

𝑇𝑐
𝑘=1 . 

The partial derivative of F w.r.t 𝛷𝑘: 
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(12)   
∂(𝐹𝛷

∗ )

∂(𝛷𝑘)
 = 0. 

Accordingly 

(13)   ∑ 𝑝(𝑧𝑖)𝑝(𝛷𝑘)𝑒
−𝐷𝑘(𝑧𝑖)

T𝑙
𝑖=1 [𝑧𝑖 − 𝛷𝑘] = 0. 

By dividing by the normalization factor 

(14)   𝑍𝑧𝑖
= ∑ 𝑝(𝛷𝑚)𝑒

−𝐷𝑚(𝑧𝑖)

𝑇𝑐
𝑚=1 , 

and so, 

(15)   ∑
𝑝(𝑧𝑖)𝑝(𝛷𝑘)𝑒

−𝐷𝑘(zi)

𝑇

𝑍𝑧𝑖

𝑙
𝑖=1 𝑧𝑖 =  ∑

𝑝(𝑧𝑖)𝑝(𝛷𝑘)𝑒
−𝐷𝑘(𝑧𝑖)

𝑇

𝑍𝑧𝑖

𝑙
𝑖=1 𝛷𝑘. 

Using Equation (10) leads to: 

(16)   ∑ 𝑝(𝑧𝑖)
𝑙
𝑖=1 𝑝(𝛷𝑘|𝑧𝑖)𝑧𝑖 =  ∑ 𝑝(𝑧𝑖)

l
i=1 𝑝(𝛷𝑘|𝑧𝑖)𝛷𝑘, 

(17)   𝛷𝑘 =  ∑
𝑝(𝑧𝑖)𝑝(𝛷𝑘|𝑧𝑖)

∑ 𝑝(𝑧𝑖)𝑙
𝑖=1 𝑝(𝛷𝑘|𝑧𝑖)

𝑧𝑖
𝑙
𝑖=1 =  ∑ 𝛼𝑘𝑖𝑧𝑖

𝑙
𝑖=1 . 

Finally, we obtain the expression of 𝛼𝑘𝑖 that will be used to construct the vicinal 

kernel for NSVC functions 

(18)   𝛼𝑘𝑖 =  
𝑝(𝑧𝑖)𝑝(𝛷𝑘|𝑧𝑖)

∑ 𝑝(𝑧𝑗)𝑙
𝑗=1 𝑝(𝛷𝑘|𝑧𝑗)

. 

3.2. NSVC with the feature space partitioning 

The optimization problem based on feature space partitioning is formulated as 

follows [13]: 

(19)   minimize  𝛷(𝑤) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑘

𝐾
𝑘=1 , 

subject to   𝑦𝑘 ∫ ([< 𝑧, 𝑤 >  +𝑏]𝑝(𝑧|𝛷𝑘))𝑑𝑧 ≥  1 −  𝜉𝑘𝑉(𝛷𝑘)
, 

𝜉𝑘  ≥  0,   𝑘 =  1, . . . , 𝐾,  
where 𝑉(𝛷𝑘)  represents the k-th vicinity associated with the mass center 𝛷𝑘 in the 

feature space, and 𝑝(𝑧|𝛷𝑘 ) is the conditional probability of respective vicinity in 

the feature space. 

According to Bayes theorem 

(20)   𝑝(𝑧𝑖|𝛷𝑘) =
𝑝(𝑧𝑖)𝑝(𝛷𝑘|𝑧𝑖)

𝑝(𝛷𝑘)
=  

𝑝(𝑧𝑖)𝑝(𝛷𝑘|𝑧𝑖)

∑ 𝑝(𝑧𝑗)𝑙
𝑗=1 𝑝(𝛷𝑘|𝑧𝑗)

. 

By comparing Equation (18) and Equation (21), we get: 

(21)   𝛷𝑘 = ∑ 𝑝(𝑧𝑖|𝛷𝑘)𝑧𝑖
𝑙
𝑖=1 , 

and the optimization constraint becomes: 

(22)   𝑦𝑘 ∫ ([〈𝑧, 𝑤〉 + 𝑏]𝑝(𝑧|𝛷𝑘))𝑑𝑧
𝑉(𝛷𝑘)

= 

= 𝑦𝑘[〈∫ 𝑝(𝑧|𝛷𝑘)𝑧𝑑𝑧
𝑉(𝛷𝑘)

, 𝑤〉 + ∫ 𝑏𝑝(𝑧|𝛷𝑘)𝑑𝑧]
𝑉(𝛷𝑘)

 = 

= 𝑦𝑘[〈∑ 𝑝(𝑧𝑖|𝛷𝑘)𝑧𝑖
𝑙
𝑖=1 , 𝑤〉  + ∑ 𝑏𝑝(𝑧𝑖|𝛷𝑘)𝑙

𝑖=1 ] = 

= 𝑦𝑘[〈𝛷𝑘, 𝑤〉 + 𝑏]. 
Let define the mono- and bi-vicinal kernels as 
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(23)   𝐿𝑘(𝑥) = ∑ 𝑦𝑖𝛼𝑘𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏,𝑙
𝑖=1     𝑘 = 1, 2, … , 𝐾, 

(24)  𝑀𝑘𝑚(𝑥) = ∑ ∑ 𝑦𝑖𝑦𝑗𝛼𝑘𝑖𝛼𝑚𝑗𝐾(𝑥𝑖 , 𝑦𝑗) + 𝑏𝑙
𝑗=1

𝑙
𝑖=1 ,   𝑘, 𝑚 = 1,2, … , 𝐾, 

where the 𝛼𝑘𝑖 parameters are obtained from the SKDA clustering step. 

The decision boundary is 

(25)   𝑓(𝑥) = ∑ 𝛽𝑘𝑦𝑘𝐿𝑘(𝑥) + 𝑏𝑐
𝑘=1 , 

where 𝛽𝑘 is the coefficient that maximizes the dual function 

(26)   maximize 𝑊(𝛽) =  ∑ 𝛽𝑘
𝑐
𝑘=1 −

1

2
∑ 𝛽𝑘𝛽𝑚𝑦𝑘𝑦𝑚

𝑐
𝑘,𝑚=1 𝑀𝑘𝑚(𝑥), 

subject to ∑ 𝛽𝑘𝑦𝑘,

𝑐

𝑘=1

 𝛽𝑘  ≥  0. 

In order to obtain a sparse solution at the cost of the extra clustering procedure, 

a good selection of the number of clusters is required. 

4. Simulation and experimental results 

4.1. BOSS dataset description 

The purpose of the conducted experiments is to test the robustness and performance 

of the proposed approach for distinguishing face from non faces in different situations 

of facial expression, pose and luminance. In this context we used a set of real images 

established within our research team. This dataset is named BOSS, the selected 

images are almost frontal images with variations of poses, illumination and 

expressions. The normalization of all the images of the BOSS dataset is done by the 

cascade detector of Viola-Jones algorithm to remove unnecessary parts of the image. 

The retained size for the images is 1919 pixels relative to the position of the eyes. 

The original dataset contains 2,000 images with 949 faces and 1051 non-faces. 

4.2. MIT-CBCL dataset description 

In addition to the previous dataset, we seek to demonstrate the performance of our 

method on a very well-known dataset used by the research community, namely the 

MIT-CBCL dataset. 

The training set consists of 6,977 cropped images (2,429 faces and 4,548 non-

faces). In our experiment, each image is normalized to 1919 pixels. Fig. 1 shows 

some face images in the training and test sets. 

 
Fig. 1. A subset of MIT database used for classification 
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4.3. Experimental results 

An accurate and robust face classification system was developed and tested. This 

system exploits the feature extraction capabilities of the DCT used by the NSVC 

classifier to increase the robustness to variations conditions.  

After several experimental tests, the best accuracy was reached by the 

polynomial kernel function, which provided the most stable results after several tests. 

The classification accuracy on the BOSS datasets is given in Table 1. 

Table 1.  Classification results with NSVC. 

Method Polynomial kernel (q) Accuracy (%) 

DCT-NSVC 2 99.63 

GABOR-NSVC 7 98.75 

HOG-NSVC 2 97.15 

The proposed technique performed much better compared to the other technique 

of feature extraction like HOG and Gabor combined NSVC. 

Next, to demonstrate the effectiveness of our proposed algorithm, we have 

compared its performance to state-of-the art supervised classifiers. The obtained 

results are shown in Fig. 2. 

 
Fig. 2. Comparison results of different classifiers methods 

We can conclude that almost all algorithms give good precision results: KNN 

(95%), SVM-linear (97%), Decision Tree (93%), Ranam Forest (97%), Adaboost 

(99%), Naive Bayes (93%). 

As can be seen in Fig. 2, the DCT-Adaboost gives the best result of 99% 

accuracy. From Table 1 and Fig. 2, we can clearly observe that the NSVC 

outperforms the other classifiers. 

4.4. Validation of experimental results 

The classification results of our proposed method DCT-NSVC evaluated on the  

MIT-CBCL dataset are represented on the Table 2. 
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Table 2. Classification results for the MIT Data Set. 

Kernel Parameter Accuracy (%) 

Linear – 99.00 

Polynomial q=2 99.78 

The results show that the DCT with NSVC polynomial kernel function achieves 

the highest performance in terms of the accuracy (99.78%). 

Finally, it’s clear from the two evaluations that the proposed DCT-NSVC 

surpasses all the other sets classifiers on both Datasets. The main evaluation criteria 

used for comparison is the accuracy of the classification, without forgetting the 

adaptation to effectively manage practical applications where learning data can come 

from different environments. 

5. Conclusion 

In this paper, we presented a robust feature selection algorithm for face classification. 

The proposed approach consists first on extracting the image features in the frequency 

domain using the DCT transform. Then the classification used the NSVC method. 

The evaluation and comparison of the performance of the proposed approach was 

carried out using two public and real datasets, the best accuracy obtained exceeds 

99% in both of them. 
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