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Abstract: The purpose of this paper is proposing, analyzing and assessing two new 

algorithms of the EDAS method for group multi-criteria decision making with fuzzy 

sets. In the first proposed EDAS extension for distance measure between two interval 

Type-2 fuzzy numbers is applied Graded Mean Integration Representation (GMIR). 

The second algorithm takes into account the proximity between the fuzzy alternatives 

and its similarity measure is Map Distance Operator (MDO). The two new 

algorithms are verified by a numerical example. Comparative analysis of obtained 

rankings demonstrates that GMIR extension is more reliable as an interval Type-2 

fuzzy alternative to Evaluation based on Distance from Average Solution (EDAS). In 

case that time is of the essence, the MDO EDAS could be preferred. 

Keywords: Multi-criteria group decision making, fuzzy decision making, Interval 

Type-2 fuzzy sets, EDAS. 

1. Introduction 

The development of modern organizations can be described by uncertainty and it 

depends on a number of factors, related to preferred business model and surrounding 

environment. Vagueness that accompanies organizations’ activities, impedes 

conducting precise experiments and leads to an inability to do exact calculations. 

Moreover, data necessary for making economic decisions are varied, growing rapidly 

and hard to extract. Therefore, rational management of a modern organization may 

be regarded as a multi-criteria task with inaccurate and incomplete information. As, 

in the general case, there is no single solution to a multi-criteria task, several different 

approaches for taking into account and overcoming impreciseness in management 

have been proposed, among them fuzzy sets [5-7, 18, 20] and fuzzy relations [14-17].  

Research continues and employs more advanced forms of classic fuzzy sets. 

New mechanisms for crisp values calculating [19, 24] and new aggregation operators 

for summarizing relations [4, 11, 22] are presented. 

The purpose of this research is to propose and compare two Interval Type-2 

Fuzzy Sets (IT2FSs) algorithms of the Evaluation based on Distance from Average 

Solution (EDAS) method. The rest of the paper is organized as follows: 

Contemporary IT2FSs decision-making applications and existing EDAS 
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modifications are introduced in Section 2. Section 3 defines the basic operations for 

measuring distance and similarity with Interval Type-2 Fuzzy Numbers (IT2FNs) and 

describes the implementation steps used in fuzzy EDAS. Section 4 introduces the 

peculiarities in new fuzzy EDAS methods for multi-criteria group decision-making. 

Section 5 provides a numerical example, illustrating the proposed variants. Finally, 

results are compared to those obtained when applying other fuzzy EDAS and TOPSIS 

modifications. 

2. Literature review 

Alternatives’ ranking usually requires both quantitative and qualitative evaluations. 

Interval Type-2 fuzzy sets are one of the approaches that help decision makers handle 

uncertainty and vagueness of data. A b d u l l a h, A d a w i y a h  and K a m a l  [1] have 

investigated a new decision making method of Interval Type-2 Fuzzy Simple 

Additive Weighting (IT2FSAW) as a tool in dealing with ambiguity and imprecision. 

The new method is applied to establish a preference in ambulance location [1]. 

In order to ensure more effective multi-criteria decision-making in uncertain 

environments, Z h o n g  and Y a o  [25] extend the elimination and choice translating 

reality (ELECTRE) method using interval Type-2 fuzzy numbers. They propose a  

α-based distance method for measuring proximity between IT2FNs. Additionally, an 

entropy measure for the IT2FNs and an entropy weight model are developed to 

objectively determine the criteria weights without any weight information [25].  

The aim of S o n e r, C e l i k  and A k y u z  [21] is to provide not only a hybrid 

theoretical methodology in multiple-attribute decision making problems, but also a 

practical application in maritime transportation industry. The proposed hybrid 

approach integrates Analytic Hierarchy Process (AHP) method into 

VlseKriterijumska Optimizacijia I Kompromisno Resenje (VIKOR) technique in an 

Interval Type-2 Fuzzy (IT2F) environment. While AHP and VIKOR provide a 

comprehensive framework to solve Multiple-Attribute Decision Making (MADM) 

problems in maritime transportation industry, interval Type-2 fuzzy sets enables 

dealing with uncertainty characteristic of linguistic assessments of decision makers. 

Besides its robust theoretical insight, the paper has practical contribution to the naval 

engineers, classification societies and ship owners who have difficulty in deciding 

appropriate hatch cover type during construction of the ship [21]. 

EDAS is a relatively new method of MCDM, proposed by G h o r a b a e e  et al. 

[10]. In EDAS, ideas from adaptive methods in MCDM TOPSIS and VIKOR have 

been improved. The numerous applications of the method show its potential for 

coping with various problems, for example, in warehouse management [9], 

sustainable development management [23], etc. 

3. Methodology 

The paper gives preference to interval Type-2 fuzzy sets assessments, since, on one 

hand, they are more flexible than classic Type-1 fuzzy sets in accounting for 

vagueness and uncertainty in data. On the other hand, it relies on a kind of Type-2 

fuzzy sets known as interval Type-2 fuzzy numbers (IT2FNs), as it is able to deal 



 53 

more effectively with ambiguity, has better processing abilities, and simpler 

computations in comparison to classic Type-2 fuzzy numbers. 

Suppose that �̃̃� and �̃̃� are two trapezoidal IT2FNs, where: 

�̃̃� = (�̃�T | 𝑇 ∈ {𝑈, 𝐿}) = (𝑎𝑖
T;  𝐻1𝐴

T ;  𝐻2𝐴
T  | 𝑇 ∈  {𝑈, 𝐿}, 𝑖 = 1, 2, 3, 4), 

�̃̃� = (�̃�T | 𝑇 ∈ {𝑈, 𝐿}) = (𝑏𝑖
T;  𝐻1𝐵

T ;  𝐻2𝐵
T  | 𝑇 ∈  {𝑈, 𝐿}, 𝑖 = 1, 2, 3, 4), 

and 𝑃 (�̃̃�) is a crisp number. 

The basic arithmetic operations for working with IT2FNs are described in the 

specialized literature and we will not comment them here. 

3.1. Graded mean integration representation of IT2FNs 

Let �̃�T| 𝑇 ∈ {𝑈, 𝐿}) = (𝑎𝑖
T;  𝐻1𝐴

T ;  𝐻2𝐴
T  |𝑇 ∈  {𝑈, 𝐿}, 𝐻1𝐴

T = 𝐻2𝐴
T , 𝑖 = 1, 2, 3, 4) are the upper 

and the lower trapezoidal membership function of �̃̃� respectively with the given 

shape function: 

(1)  𝜇𝐴T =

{
 
 

 
 (

𝑥−𝑎1
T

𝑎2
T−𝑎1

T)
𝑛

  when  𝑥 ∈ [𝑎1
T, 𝑎2

T),

𝐻1𝐴
T            when  𝑥 ∈ [𝑎2

T, 𝑎3
T],

(
𝑎4
T−𝑥

𝑎4
T−𝑎3

T)
𝑛

  when  𝑥 ∈ (𝑎3
T, 𝑎4

T],

0                        otherwise,

 

where n > 0. If n = 1, then �̃�T are known as normal trapezoidal fuzzy numbers. 

According to the graded mean integration representation formula [3], the crisp 

value of �̃̃� can be defined by the next equation: 

(2)  𝑃 (�̃̃�) =
1

2
(𝑃(�̃�U) + 𝑃(�̃�L))= 

=
1

2
∑ ∫ ℎ[(𝑎1

T + (𝑎2
T − 𝑎1

T)ℎ
1

𝑛 + (𝑎4
T − (𝑎4

T − 𝑎3
T)ℎ

1

𝑛)] 𝑑ℎ/ ∫ ℎ 𝑑ℎ  
𝐻𝑝𝐴
T

0

𝐻𝑝𝐴
T

0𝑇∈{𝑈,𝐿},   𝑝=1,2 = 

=
1

2
∑ ∫ [(𝑎1

T + 𝑎4
T)ℎ + (𝑎2

T − 𝑎1
T − 𝑎4

T + 𝑎3
T)ℎ

𝑛+1

𝑛 )] 𝑑ℎ/ ∫ ℎ 𝑑ℎ
𝐻𝑝𝐴
T

0

𝐻𝑝𝐴
T

0𝑇∈{𝑈,𝐿},   𝑝=1,2 = 

=
1

2
((

𝑎1
U+𝑎4

U

2
+

(𝑎2
U−𝑎1

U−𝑎4
U+𝑎3

U)𝐻1𝐴
U

3
) + (

a1
L+a4

L

2
+

(𝑎2
L−𝑎1

L−a4
L+a3

L)𝐻1𝐴
L

3
)). 

3.2. Map distance between IT2FNs 

The degree of similarity between two interval Type-2 trapezoidal fuzzy numbers �̃̃� 

and �̃̃� based on map distance can be determined as follows [2]: 

1. Computation of the distance values ∆𝑎𝑖 and ∆𝑏𝑖, i = 1, 2, 3, 4. 

In case of interval Type-2 trapezoidal fuzzy numbers �̃̃� and �̃̃�, the distance 

values between the upper and lower trapezoidal fuzzy numbers are calculated as 

follows:  

(3)  ∆𝑎𝑖 = |𝑎𝑖
U−𝑎𝑖

L|  and ∆𝑏𝑖 = |𝑏𝑖
U−𝑏𝑖

L|, 𝑖 = 1, 2, 3, 4. 

2. Evaluation of the degree of similarity 𝑆(�̃�∆, �̃�∆) between ∆𝑎𝑖 and ∆𝑏𝑖. 

a)  Calculation of the standard deviations ∆𝑆𝑎 and ∆𝑆𝑏  between the upper and 

lower fuzzy numbers:  

(4)  �̅�U =
1

4
(𝑎1

U + 𝑎2
U+𝑎3

U+𝑎3
U), �̅�L =

1

4
(𝑎1

L + 𝑎2
L+𝑎3

L+𝑎3
L), 

(5)  𝑆𝐴U = √
∑ (𝑎𝑖

U−�̅�U)24
𝑖=1

3
,  𝑆𝐴L = √

∑ (𝑎𝑖
L−�̅�L)24

𝑖=1

3
,  
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(6)  ∆𝑆𝑎 = |𝑆𝐴U −  𝑆𝐴L|. 

Similarly, find �̅�U, �̅�L, 𝑆�̃�U ,  𝑆�̃�L , and  ∆𝑆𝑏. 

b) Determination of the map distance between the upper and lower trapezoidal 

fuzzy numbers: 

(7)   𝑇∆ =
1

2
[(2 −

1+max{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}

1+min{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}
) + (2 −

1+max{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}

1+min{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}
)]. 

c) Evaluation of the degree of similarity 𝑆(�̃�∆, �̃�∆) ∈ [0, 1]: 

(8)  𝑆(�̃�∆, �̃�∆) = [1 −
√∑ (∆𝑎𝑖−∆𝑏𝑖)

24
𝑖=1

2
] × [1 − √

|∆𝑆𝑎−∆𝑆𝑏|

2
] × [1 −

|𝐻1𝐴
L −𝐻1𝐵

L |

|𝐻1𝐴
U +𝐻1𝐵

U |
] × 𝑇∆. 

3. Computing the degree of similarity 𝑆(�̃�U, �̃�U) between �̃�Uand �̃�U. 

a) Find the map distance between the upper trapezoidal fuzzy numbers: 

(9)  𝑇U =
1

2
[(2 −

1+max{|𝑎2
𝑢−𝑎1

𝑢|,|𝑏2
𝑢−𝑏1

𝑢|}

1+min{|𝑎2
𝑢−𝑎1

𝑢|,|𝑏2
𝑢−𝑏1

𝑢|}
) + (2 −

1+max{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}

1+min{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}
)]. 

b) Calculate the degree of similarity 𝑆(�̃�𝑈, �̃�𝑈) ∈ [0,1]: 

(10) 𝑆(�̃�U, �̃�U) = [1 −
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
] × [1 − √

|𝑆
�̃�U

−𝑆
�̃�U

|

2
] × [

min(𝐻1𝐴
U , 𝐻1𝐵

U )

max(𝐻1𝐴
U , 𝐻1𝐵

U )
] × 𝑇U. 

4. Evaluate the degree of similarity 𝑆(�̃̃�, �̃̃�) between the trapezoidal fuzzy 

numbers �̃̃� and �̃̃�: 

(11)  𝑆 (�̃̃�, �̃̃�) =
 𝑆(𝐴U, �̃�U)×(1+ 𝑆(𝐴∆, �̃�∆))

2
. 

The greater value of 𝑆 (�̃̃�,  �̃̃�) means that the similarity between �̃̃� and �̃̃� is 

greater. 

4. Proposed EDAS algorithms via IT2FSs 

Let a MCDM problem has n alternatives (A1, …, An) and m decision criteria  

(C1, …, Cm) and each alternative is assessed according to these criteria. Decision matrix 

�̃̃� = [�̃̃�𝑖𝑗]𝑛𝑚 shows all values which are assigned to the alternatives for each criterion. 

The related weight of each criterion is shown as �̃̃� = [�̃̃�𝑗]1𝑚, where �̃̃� and �̃̃� are 

IT2FNs. 

4.1. EDAS modification via IT2FSs distance measure 

1. Construct the average decision matrix [�̃̃�𝑖𝑗]𝑛𝑚
based on experts’ evaluations. 

2. Construct the average vector of weighted coefficients [�̃̃�𝑗]1𝑚
. 

3. Determine the average values of assessments according to criteria 𝐴�̃̃�𝑗. 

4. Calculate the matrices of PD [𝑝𝑖𝑗] and ND [�̃̃�𝑖𝑗] from average solution using GMIR. 

5. Calculate the weighted sum of PD [𝑠�̃̃�𝑖]and ND [𝑠�̃̃�𝑖] respectively. 

6. Determine the normalized PD [𝑛�̃̃�𝑖]and ND [𝑛�̃̃�𝑖] for each alternative using GMIR.  

7. Calculate the appraisal score [𝑎𝑠�̃̃�] for each alternative. 

8. Rank the alternatives according to the appraisal score using GMIR.   

Fig. 1. Flowchart of the group GMIR algorithm with IT2FSs and new distance measure 
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As in classic EDAS method, in the first proposed algorithm here, a pair of fuzzy 

matrices is calculated – Positive Distances (PD) from the average and the Negative 

Distances (ND) from the average solution. The evaluation of alternatives is made 

according to higher average normalized values of PD and ND. The novelty here is 

the idea to use Graded Mean Integration Representation (GMIR) in distance 

calculations (Step 4, Step 6, and Step 8). The modified algorithm is given in Fig. 1. 

4.2. EDAS algorithm via IT2FSs similarity measure 

In the second proposed algorithm, in Step 3, a weighted average decision matrix is 

constructed. In Step 5, alternatives’ proximities to the average solution are calculated. 

The novelty is that instead of computing the distance between fuzzy numbers, 

similarity measure is used, which utilizes the map distance operator (Section 3.2). 

Due to the symmetrical nature of the map distance formula, calculating positive and 

negative proximity to the average solution is not needed. The modified algorithm is 

presented in Fig. 2. 
 

1. Construct the average decision matrix [�̃̃�𝑖𝑗]𝑛𝑚
based on experts’ evaluations. 

2. Construct the average vector of weighted coefficients [�̃̃�𝑗]1𝑚
. 

3. Calculate the weighted average decision matrix [𝑤�̃̃�𝑖𝑗]𝑛𝑚
 

4. Determine the weighted average values of assessments according to critera �̃̃�𝑗. 

5. Calculate the similarity measures between [𝑤�̃̃�𝑖𝑗]𝑛𝑚
 and �̃̃�𝑗 using map distance operator. 

6. Calculate the total degree of similarity of each alternative to the ideal solution [𝑑𝑠𝑗] 1𝑚. 

7. Rank the alternatives according to their total degree of similarity. 

Fig. 2. Flowchart of the group MDO algorithm with IT2FSs and similarity measure 

A detailed step-by-step description of new algorithms is provided in the next 

section. 

5. Numerical example 

Let an MCDM problem have four alternatives (A1, … , A4) and seven decision criteria 

(C1, … , C7), and all criteria be beneficial (maximizing). Let there be three experts, who 

assess the compared alternatives using IF2FNs and assign IF2FNs weights to every 

criterion.  

Step 1. The decision matrix �̃̃� = [�̃̃�𝑖𝑗]47 contains averaged experts’ assessments 

of each alternative according to every criterion.  

Step 2. The average relative weight of each criterion is shown in the vector  

�̃̃� = [�̃̃�𝑗]17. 

Table 1. Decision matrix and weights of the criteria 

Alternative C1 C2 C3 C4 C5 C6 C7 

A1 L AH VH VH H AH VH 

A2 L M L L VL AH VH 

A3 M M L H L M H 

A4 H H L AH H H L 

W H M L VH M VH AH 
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The values in the decision matrix and weighted coefficients are shown in  

Table 1 as nine grade linguistic variables. For transforming every linguistic variable 

into its corresponding symmetric trapezoidal IT2FN, we apply a correspondence 

table (Table 2). Obtained results are given in Table 3 and Table 4 in the Appendix. 

Table 2. Linguistic terms and their corresponding interval type-2 fuzzy numbers 

Linguistic terms Trapezoidal IT2FNs 

No influence (No) ((0,0,0.05,0.15;1,1),(0,0,0.035,0.125;0.9,0.9)) 

Very Low (VL) ((0,0.1,0.15,0.25;1,1),(0.025,0.115,0.135,0.225;0.9,0.9)) 

Low (L) ((0.125,0.225,0.275,0.375;1,1),(0.15,0.24,0.26,0.35;0.9,0.9)) 

Medium Low (ML) ((0.25,0.35,0.4,0.5;1,1),(0.275,0.365,0.385,0.475;0.9,0.9)) 

Medium (M) ((0.375,0.475,0.525,0.625;1,1),(0.4,0.49,0.51,0.6;0.9,0.9)) 

Medium High (MH) ((0.5,0.6,0.65,0.75;1,1),(0.525,0.615,0.635,0.725;0.9,0.9)) 

High (H) ((0.625,0.725,0.775,0.875;1,1),(0.65,0.74,0.76,0.85;0.9,0.9)) 

Very High (VH) ((0.75,0.85,0.9,1;1,1),(0.775,0.865,0.885,0.975;0.9,0.9)) 

Absolutely High (AH) ((0.875,0.975,1,1;1,1),(0.9,0.99,1,1;0.9,0.9)) 

5.1. EDAS algorithm via IT2FNs distance measure 

Step 3. The matrix of average values of assessments according to each criterion 

𝐴�̃̃�𝑗 is built by using the results of Step 1 and the next equation:  

(12) 𝐴�̃̃�𝑗 =
∑ 𝑥𝑖𝑗
𝑛
𝑖=1

𝑛
. 

Step 4. Based on Table 3, matrix of average solution from Step 3 and Equations 

(13) to (16), the Positive Distances (PD) and Negative Distances (ND) matrices are 

calculated: 

(13)  PD = [𝑝�̃̃�𝑖𝑗]4×7, 

(14)  ND = [𝑛�̃̃�𝑖𝑗]4×7, 

(15)   𝑝�̃̃�𝑖𝑗 = {

𝜓(𝑥𝑖𝑗⊝𝑎�̃̃�𝑗)

𝑃(𝑎�̃̃�𝑗)
  if  𝑗 ∈ 𝐵,

𝜓(𝑎�̃̃�𝑗⊝𝑥𝑖𝑗)

𝑃(𝑎�̃̃�𝑗)
 if  𝑗 ∈ 𝐶,

  

(16)  𝑛�̃̃�𝑖𝑗 = {

𝜓(𝑎�̃̃�𝑗⊝𝑥𝑖𝑗)

𝑃(𝑎�̃̃�𝑗)
 if  𝑗 ∈ 𝐵,

𝜓(𝑥𝑖𝑗⊝𝑎�̃̃�𝑗)

𝑃(𝑎�̃̃�𝑗)
 if  𝑗 ∈ 𝐶,

  

where function 𝜓 is defined to determine the maximum of interval Type-2 fuzzy 

number and zero as follows: 

(17)  𝜓(�̃̃�) = {
�̃̃�  if  𝑃 (�̃̃�) > 0,

0̃̃  if  𝑃 (�̃̃�) ≤ 0,
  

where 0̃̃=((0, 0, 0, 0; 1, 1),(0, 0, 0, 0; 1, 1)) and B signifies the set of maximizing 

criteria, and C denotes the group of minimizing criteria [9]. 

Steps 5-7. By using matrices of positive and negative distances and the next 

Equations (18)-(22), the weighted sum of positive and negative distances (𝑠�̃��̃� and 

𝑠�̃��̃�), their normalized values (𝑛�̃��̃� and 𝑛�̃��̃�), and the appraisal scores are calculated for 

all alternatives: 

(18)  𝑠�̃��̃� =⊕𝑗=1
𝑚 (�̃̃�𝑗⊗𝑝�̃̃�𝑖𝑗), 
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(19)  𝑠�̃��̃� =⊕𝑗=1
𝑚 (�̃̃�𝑗⊗𝑛�̃̃�𝑖𝑗), 

(20)  𝑛�̃��̃� =
𝑠�̃�1̃

max𝑖 (𝑃(𝑠�̃��̃�)
, 

(21)  𝑛�̃�𝑖̃ = 1 −
𝑠�̃�1̃

max𝑖 (𝑃(𝑠�̃��̃�)
, 

(22)  ℎ̃𝑖
̃ =

𝑃(𝑛�̃̃�𝑖)+𝑃(𝑛�̃̃�𝑖)

2
  

Step 8. According to Table 6 (see Appendix), the ranking values of Appraisal 

Scores (AS) can be calculated. The results are as follows: A1 (0.894) ≻ A4 (0.663) ≻ 

A3 (0.318) ≻ A2 (0.153). Therefore, A1 is the best alternative according to the given 

seven criteria.  

5.2. EDAS algorithm via IT2FSs similarity measure 

As Step 1 and Step 2 are shared by both two algorithms, calculations continue from 

the next step: 

Step 3. Calculate the weighted average decision matrix [𝑤�̃̃�𝑖𝑗]47, where  

𝑤�̃̃�𝑖𝑗 = w̃̃𝑗 ⊗ �̃̃�𝑖𝑗, 1 ≤ 𝑖 ≤ 4 and 1 ≤ 𝑗 ≤ 7 (Table 7, see Appendix). 

Step 4. Determine the weighted average values of assessments according to 

criteria [�̃̃�𝑗]17, where �̃̃�𝑗 = w̃̃𝑗⊗𝑎�̃̃�𝑗, 1 ≤ 𝑗 ≤ 7 (Table 8, see Appendix). 

Step 5 and 6. Calculate the similarity measures between [𝑤�̃̃�𝑖𝑗]𝑛𝑚 and �̃̃�𝑗  using 

the map distance operator. Results are shown in Table 9 (see Appendix), (Equations 

(4), (5) and (6) for 𝑤�̃̃�𝑖𝑗), Table 10 (see Appendix), (Equations (4), (5) and (6) for �̃̃�𝑗) 

and Table 11 (see Appendix), (Equations (7), (8), (9), (10) and (11) for 𝑤�̃̃�𝑖𝑗 and �̃̃�𝑗). 

After computing the total degree of similarity of each alternative to the ideal solution 

[𝑑𝑠𝑗] 1𝑚 we have: A1 ≈ 4.613, A2 ≈ 4.548, A3 ≈ 5.082, A4 ≈ 4.465. Final ranking is 

as follows: A3 ≻ A1 ≻ A2 ≻ A4. 

5.3. Comparison of obtained results with other heuristic EDAS methods 

In order to validate the results, we solve the same task with heuristic formulae from 

our literature review for determining distances between IT2FNs, such as DTraT [8] 

и 𝔖 [9]. Obtained rankings are shown in Table 3. To evaluate the qualities of the 

solutions obtained, we compute generalized ranking with Borda count and 

Copeland’s methods. It turns out that the ranking given by the first variant is 

practically identical to the two benchmarking-rankings (for Borda count  A1 ≻ A4 ≻ 

A3 ≻ A2, for Copeland’s method  A1 ≻ A4 ≻ A3 ≈ A2). This is not the case with the 

map distance variant, however. Here, there are considerable shifts and the ranking is 

as follows: A2 ≻ A3 ≻ A1 ≻ A4 (Table 3). 

Table 3. Comparing different EDAS modifications and the corresponding Borda count and 

Copeland’s Method’s (CM) ranking 

Alterna-

tive 

EDAS GMIR EDAS MDO EDAS DTraT EDAS 𝔖 

Values Rank Values Rank Values Rank Values Rank 

A1 0.894 1 4.613 2 0.863 1 0.885 1 

A2 0.153 4 4.548 3 0.086 4 0.123 4 

A3 0.318 3 5.082 1 0.261 3 0.292 3 

A4 0.663 2 4.465 4 0.624 2 0.646 2 
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Table 3 (c o n t i n u e d) 

Alterna-

tive 

TOPSIS DTraT TOPSIS GMIR Borda 

count 

CM 

points Values Rank Values Rank 

A1 0.776 1 0.7841 1 23 3 

A2 0.502 3 0.4827 3 9 0.5 

A3 0.459 4 0.4521 4 12 0.5 

A4 0.521 2 0.5281 2 16 2 
 

Performance analysis of the two modifications shows that the mechanisms for 

determining similarity differ in their time complexities. The MDО method needs 

fewer calculations. The existence of two distance matrices, however, requires 

additional computations, therefore the complexity of GMIR EDAS is greater than 

that of MDО algorithm. For example, in the GMIR variant, two distance matrices are 

calculated and normalized (Equation (18) and Equation (19), respectively). 

Aggregating the pair of matrices is also an intensive computational process 

(Equations (20)-(22)). The MDО variant works with a single matrix and the number 

of operations is smaller (Equations (4)-(11)). Additional optimization is possible, 

since the average solution’s characteristics (Equation (4)) are calculated only once. 

Due to the fewer calculations, at first glance it may seem that MDО EDAS holds 

the advantage. However, this statement does not apply to algorithm’s reliability, 

which is very important measure of new modifications’ qualities from a practical 

point of view. 

Comparative analysis with IT2FNs TOPSIS and other EDAS methods shows a 

deviation of MDО EDAS ranking from the average result, calculated via statistical 

methods. In practice, there is a possibility that deviations decrease if instead of 

average values calculated in situ, we work with optimal values, provided by 

manufacturer or experts selected in advance. 

6. Conclusions 

The paper proposes two algorithms of EDAS in a IT2FSs environment – one with 

GMIR defuzzification and another with MD method for measuring similarity. The 

advantages of the algorithms are as follows: 1) expand the applicability of EDAS in 

more uncertainty environments; 2) enrich the tools for distance measure in EDAS 

MCDM. Using a numerical example, it was proven that the new algorithms are 

suitable for MCDM in the absence of dependencies between assessment criteria. 

Obtained results were compared to results from employing existing formulae for 

distance between IT2FSs from specialized literature. Analysis confirms the 

efficiency of the two EDAS algorithms.  

In the future, we plan on conducting more experiments with other fuzzy sets 

extensions and implementing the methods of IT2FSs MCDA in various fields of 

applications, such as modeling and simulating complex systems. 
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Appendix. Step-by-step calculations 

Table 4. The average decision matrix [�̃̃�𝑖𝑗]47
 

�̃̃�𝑖𝑗  
�̃�𝑖𝑗
U  �̃�𝑖𝑗

L  

𝑥1
U 𝑥2

U 𝑥3
U 𝑥4

U 𝑥1
L 𝑥2

L 𝑥3
L 𝑥4

L 

�̃̃�11 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�21 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�31 0.375 0.475 0.525 0.625 0.400 0.490 0.510 0.600 

�̃̃�41 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�12 0.875 0.975 1.000 1.000 0.900 0.990 1.000 1.000 

�̃̃�22 0.375 0.475 0.525 0.625 0.400 0.490 0.510 0.600 

�̃̃�32 0.375 0.475 0.525 0.625 0.400 0.490 0.510 0.600 

�̃̃�42 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�13 0.750 0.850 0.900 1.000 0.775 0.865 0.885 0.975 

�̃̃�23 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�33 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�43 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�14 0.750 0.850 0.900 1.000 0.775 0.865 0.885 0.975 

�̃̃�24 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�34 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�44 0.875 0.975 1.000 1.000 0.900 0.990 1.000 1.000 

�̃̃�15 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�25 0.000 0.100 0.150 0.250 0.025 0.115 0.135 0.225 

�̃̃�35 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�45 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�16 0.875 0.975 1.000 1.000 0.900 0.990 1.000 1.000 

�̃̃�26 0.875 0.975 1.000 1.000 0.900 0.990 1.000 1.000 

�̃̃�36 0.375 0.475 0.525 0.625 0.400 0.490 0.510 0.600 

�̃̃�46 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�17 0.750 0.850 0.900 1.000 0.775 0.865 0.885 0.975 

�̃̃�27 0.750 0.850 0.900 1.000 0.775 0.865 0.885 0.975 

�̃̃�37 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�47 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 
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Table 5. The average weights’ coefficients [�̃̃�𝑗]17
 

�̃̃�𝑗  

�̃�𝑖𝑗
U �̃�𝑖𝑗

L  

𝑤1
U 𝑤2

U 𝑤3
U 𝑤4

U 𝑤1
L 𝑤2

L 𝑤3
L 𝑤4

L 

�̃̃�1 0.625 0.725 0.775 0.875 0.650 0.740 0.760 0.850 

�̃̃�2 0.375 0.475 0.525 0.625 0.400 0.490 0.510 0.600 

�̃̃�3 0.125 0.225 0.275 0.375 0.150 0.240 0.260 0.350 

�̃̃�4 0.750 0.850 0.900 1.000 0.775 0.865 0.885 0.975 

�̃̃�5 0.375 0.475 0.525 0.625 0.400 0.490 0.510 0.600 

�̃̃�6 0.750 0.850 0.900 1.000 0.775 0.865 0.885 0.975 

�̃̃�7 0.875 0.975 1.000 1.000 0.900 0.990 1.000 1.000 

Table 6. The weighted sum of distances from the average solution, their 

normalized values and corresponding appraisal scores 

𝑠�̃̃�𝑖 
�̃�𝑖𝑗
U  �̃�𝑖𝑗

L  

𝑘1
U 𝑘2

U 𝑘3
U 𝑘4

U 𝑘1
L 𝑘2

L 𝑘3
L 𝑘4

L 

𝑠�̃̃�1 –0.035 1.142 1.828 3.371 0.242 1.347 1.622 2.958 

𝑠�̃̃�2 –0.091 0.354 0.585 1.027 0.018 0.428 0.520 0.914 

𝑠�̃̃�3 –0.911 0.023 0.466 1.474 –0.664 0.150 0.327 1.208 

𝑠𝑝4 0.037 0.966 1.487 2.691 0.253 1.121 1.329 2.365 

𝑠�̃̃�1 –0.078 0.142 0.262 0.546 –0.015 0.177 0.225 0.470 

𝑠�̃̃�2 0.023 0.736 1.140 2.108 0.211 0.903 1.076 1.918 

𝑠�̃̃�3 –0.079 0.377 0.632 1.246 0.048 0.452 0.554 1.077 

𝑠�̃̃�4 –0.051 0.388 0.600 1.053 0.066 0.454 0.539 0.932 

𝑛�̃̃�1 –0.023 0.743 1.188 2.191 0.157 0.876 1.054 1.923 

𝑛�̃̃�2 –0.059 0.230 0.380 0.668 0.012 0.278 0.338 0.594 

𝑛�̃̃�3 –0.592 0.015 0.303 0.959 –0.432 0.097 0.213 0.786 

𝑛�̃̃�4 0.024 0.628 0.967 1.749 0.164 0.728 0.864 1.537 

𝑛�̃̃�1 0.454 0.738 0.858 1.078 0.530 0.775 0.823 1.015 

𝑛�̃̃�2 –1.108 –0.140 0.264 0.977 –0.918 –0.076 0.097 0.789 

𝑛�̃̃�3 –0.246 0.368 0.623 1.079 –0.077 0.446 0.548 0.952 

𝑛�̃̃�4 –0.053 0.400 0.612 1.051 0.068 0.461 0.546 0.934 

ℎ̃̃1 0.216 0.740 1.023 1.635 0.344 0.825 0.939 1.469 

ℎ̃̃2 –0.584 0.045 0.322 0.823 –0.453 0.101 0.218 0.692 

ℎ̃̃3 –0.419 0.191 0.463 1.019 –0.254 0.272 0.380 0.869 

ℎ̃̃4 –0.014 0.514 0.789 1.400 0.116 0.595 0.705 1.236 

 



 62 

Table 7. The weighted average decision matrix [𝑤�̃̃�𝑖𝑗]47 

𝑤�̃̃�𝑖𝑗 
𝑤�̃�𝑖𝑗

U 𝑤�̃�𝑖𝑗
L  

𝑤𝑥1
U 𝑤𝑥2

U 𝑤𝑥3
U 𝑤𝑥4

U 𝑤𝑥1
L 𝑤𝑥2

L 𝑤𝑥3
L 𝑤𝑥4

L 

𝑤�̃̃�11 0.078 0.163 0.213 0.328 0.098 0.178 0.198 0.30 

𝑤�̃̃�21 0.078 0.163 0.213 0.328 0.135 0.228 0.251 0.34 

𝑤�̃̃�31 0.234 0.344 0.407 0.547 0.360 0.466 0.493 0.59 

𝑤�̃̃�41 0.391 0.526 0.601 0.766 0.585 0.703 0.735 0.84 

𝑤�̃̃�12 0.328 0.463 0.525 0.625 0.360 0.485 0.510 0.600 

𝑤�̃̃�22 0.141 0.226 0.276 0.391 0.160 0.240 0.260 0.360 

𝑤�̃̃�32 0.141 0.226 0.276 0.391 0.160 0.240 0.260 0.360 

𝑤�̃̃�42 0.234 0.344 0.407 0.547 0.260 0.363 0.388 0.510 

𝑤�̃̃�13 0.094 0.191 0.248 0.375 0.116 0.208 0.230 0.34 

𝑤�̃̃�23 0.016 0.051 0.076 0.141 0.023 0.058 0.068 0.12 

𝑤�̃̃�33 0.016 0.051 0.076 0.141 0.023 0.058 0.068 0.12 

𝑤�̃̃�43 0.016 0.051 0.076 0.141 0.023 0.058 0.068 0.12 

𝑤�̃̃�14 0.563 0.723 0.810 1.000 0.601 0.748 0.783 0.95 

𝑤�̃̃�24 0.094 0.191 0.248 0.375 0.116 0.208 0.230 0.34 

𝑤�̃̃�34 0.469 0.616 0.698 0.875 0.504 0.640 0.673 0.83 

𝑤�̃̃�44 0.656 0.829 0.900 1.000 0.698 0.856 0.885 0.98 

𝑤�̃̃�15 0.234 0.344 0.407 0.547 0.260 0.363 0.388 0.51 

𝑤�̃̃�25 0.000 0.048 0.079 0.156 0.010 0.056 0.069 0.14 

𝑤�̃̃�35 0.047 0.107 0.144 0.234 0.060 0.118 0.133 0.21 

𝑤�̃̃�45 0.234 0.344 0.407 0.547 0.260 0.363 0.388 0.51 

𝑤�̃̃�16 0.656 0.829 0.900 1.000 0.698 0.856 0.885 0.98 

𝑤�̃̃�26 0.656 0.829 0.900 1.000 0.698 0.856 0.885 0.98 

𝑤�̃̃�36 0.281 0.404 0.473 0.625 0.310 0.424 0.451 0.59 

𝑤�̃̃�46 0.469 0.616 0.698 0.875 0.504 0.640 0.673 0.83 

𝑤�̃̃�17 0.656 0.829 0.900 1.000 0.698 0.856 0.885 0.98 

𝑤�̃̃�27 0.656 0.829 0.900 1.000 0.698 0.856 0.885 0.98 

𝑤�̃̃�37 0.547 0.707 0.775 0.875 0.585 0.733 0.760 0.85 

𝑤�̃̃�47 0.109 0.219 0.275 0.375 0.135 0.238 0.260 0.35 

Table 8. The elements of the weighted average solution matrix [�̃̃�𝑗]17
 

�̃̃�𝑗  
�̃�𝑗
U �̃�𝑗

L 

𝑀1
U 𝑀2

U 𝑀3
U 𝑀4

U 𝑀1
L 𝑀2

L 𝑀3
L 𝑀4

L 

�̃̃�1 0.195 0.299 0.358 0.492 0.219 0.316 0.340 0.457 

�̃̃�2 0.211 0.315 0.371 0.488 0.235 0.332 0.354 0.458 

�̃̃�3 0.035 0.086 0.119 0.199 0.046 0.095 0.108 0.177 

�̃̃�4 0.445 0.590 0.664 0.813 0.480 0.613 0.643 0.774 

�̃̃�5 0.129 0.211 0.259 0.371 0.148 0.225 0.244 0.341 

�̃̃�6 0.516 0.669 0.743 0.875 0.552 0.694 0.723 0.841 

�̃̃�7 0.492 0.646 0.713 0.813 0.529 0.671 0.698 0.788 
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Table 9. The map distance calculation for matrix [𝑤�̃̃�𝑖𝑗]47
 

𝑤�̃̃�𝑖𝑗  𝑤𝑥̅̅ ̅̅ U 𝑤𝑥̅̅ ̅̅ L 𝑆𝑊�̃�U 𝑆𝑊�̃�L ∆𝑆𝑤𝑥 

𝑤�̃̃�11 0.196 0.193 0.104 0.082 0.022 

𝑤�̃̃�21 0.196 0.240 0.104 0.086 0.019 

𝑤�̃̃�31 0.383 0.477 0.130 0.095 0.036 

𝑤�̃̃�41 0.571 0.715 0.156 0.103 0.053 

𝑤�̃̃�12 0.485 0.489 0.124 0.099 0.025 

𝑤�̃̃�22 0.258 0.255 0.104 0.082 0.022 

𝑤�̃̃�32 0.258 0.255 0.104 0.082 0.022 

𝑤�̃̃�42 0.383 0.380 0.130 0.103 0.028 

𝑤�̃̃�13 0.227 0.224 0.117 0.092 0.025 

𝑤�̃̃�23 0.071 0.068 0.053 0.041 0.011 

𝑤�̃̃�33 0.071 0.068 0.053 0.041 0.011 

𝑤�̃̃�43 0.071 0.068 0.053 0.041 0.011 

𝑤�̃̃�14 0.774 0.771 0.182 0.144 0.039 

𝑤�̃̃�24 0.227 0.224 0.117 0.092 0.025 

𝑤�̃̃�34 0.664 0.661 0.169 0.133 0.036 

𝑤�̃̃�44 0.846 0.853 0.145 0.116 0.029 

𝑤�̃̃�15 0.383 0.380 0.130 0.103 0.028 

𝑤�̃̃�25 0.071 0.068 0.066 0.052 0.014 

𝑤�̃̃�35 0.133 0.130 0.079 0.062 0.017 

𝑤�̃̃�45 0.383 0.380 0.130 0.103 0.028 

𝑤�̃̃�16 0.846 0.853 0.145 0.116 0.029 

𝑤�̃̃�26 0.846 0.853 0.145 0.116 0.029 

𝑤�̃̃�36 0.446 0.443 0.143 0.113 0.030 

𝑤�̃̃�46 0.664 0.661 0.169 0.133 0.036 

𝑤�̃̃�17 0.846 0.853 0.145 0.116 0.029 

𝑤�̃̃�27 0.846 0.853 0.145 0.116 0.029 

𝑤�̃̃�37 0.726 0.732 0.138 0.110 0.028 

𝑤�̃̃�47 0.245 0.246 0.111 0.088 0.023 

Table 10. The map distance calculation for matrix [�̃̃�𝑗]17
 

�̃̃�𝑗  �̅�U �̅�L 𝑆�̃�U 𝑆�̃�L ∆𝑆𝑚 

�̃̃�1 0.336 0.333 0.124 0.098 0.026 

�̃̃�2 0.346 0.345 0.116 0.091 0.024 

�̃̃�3 0.110 0.107 0.069 0.054 0.015 

�̃̃�4 0.628 0.627 0.153 0.121 0.032 

�̃̃�5 0.243 0.239 0.101 0.080 0.022 

�̃̃�6 0.701 0.703 0.150 0.119 0.031 

�̃̃�7 0.666 0.671 0.134 0.107 0.027 
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Table 11. The map distance calculation for matrices [𝑤�̃̃�𝑖𝑗]47
 and [�̃̃�𝑗]17

 

𝑤�̃̃�𝑖𝑗  𝑇∆ 𝑆(𝑤�̃�∆, �̃�∆) 𝑇U 𝑆(𝑤�̃�U, �̃�U) 𝑆 (𝑊�̃̃�, �̃̃�) 

𝑤�̃̃�11 0.998 0.949 0.983 0.684 0.667 

𝑤�̃̃�21 0.997 0.905 0.983 0.684 0.652 

𝑤�̃̃�31 0.986 0.844 0.994 0.804 0.742 

𝑤�̃̃�41 0.972 0.746 0.972 0.583 0.509 

𝑤�̃̃�12 0.996 0.970 0.978 0.707 0.697 

𝑤�̃̃�22 0.999 0.964 0.990 0.752 0.738 

𝑤�̃̃�32 0.999 0.964 0.990 0.752 0.738 

𝑤�̃̃�42 0.998 0.954 0.987 0.780 0.762 

𝑤�̃̃�13 0.995 0.915 0.956 0.636 0.609 

𝑤�̃̃�23 0.999 0.954 0.985 0.774 0.756 

𝑤�̃̃�33 0.999 0.954 0.985 0.774 0.756 

𝑤�̃̃�43 0.999 0.954 0.985 0.774 0.756 

𝑤�̃̃�14 0.997 0.934 0.975 0.657 0.635 

𝑤�̃̃�24 0.997 0.930 0.969 0.452 0.436 

𝑤�̃̃�34 0.998 0.951 0.986 0.775 0.756 

𝑤�̃̃�44 0.995 0.949 0.966 0.635 0.619 

𝑤�̃̃�15 0.997 0.936 0.974 0.661 0.640 

𝑤�̃̃�25 0.997 0.929 0.968 0.623 0.601 

𝑤�̃̃�35 0.998 0.945 0.980 0.700 0.681 

𝑤�̃̃�45 0.997 0.936 0.974 0.661 0.640 

𝑤�̃̃�16 0.997 0.960 0.977 0.713 0.699 

𝑤�̃̃�26 0.997 0.960 0.977 0.713 0.699 

𝑤�̃̃�36 0.997 0.972 0.977 0.618 0.609 

𝑤�̃̃�46 0.997 0.942 0.977 0.760 0.737 

𝑤�̃̃�17 0.999 0.965 0.992 0.679 0.667 

𝑤�̃̃�27 0.999 0.965 0.992 0.679 0.667 

𝑤�̃̃�37 1.000 0.980 0.997 0.808 0.801 

𝑤�̃̃�47 0.998 0.943 0.980 0.455 0.442 
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